Академия
0 Корзина
Перейти в корзину
Получить цены в WhatsApp
2024_09_14_KП_EltexCM.xlsx

MES5310-48 Eltex I Коммутатор 48 портов SFP+, 6 портов QSFP28 (ЦОД)

Новинка
Артикул:

MES5310-48

Ethernet-коммутатор MES5310-48, 1×10/100/1000BASE-T (OOB), 48×1000BASE-X (SFP)/10GBASE-R (SFP+), 6×40GBASE-R (QSFP+)/100GBASE-R (QSFP28), 1×USB 2.0, коммутатор L3

Eltex
Наличие:
Скидка с первого заказа!
Гарантия до 5 лет
Мы дилер №1 Eltex
Возраст: 52 года
Офис: Москва
Опыт работы с Eltex: 5 лет
Выполненные проекты:
  • Комплексная модернизация инфраструктуры стадиона Витязь, г Вологда
  • Расширение существующей сети для Электромеханического Завода
  • Модернизация телефонии на предприятии по производству металлопродукции
  • Построение ЛВС для Школы на 275 мест в Московоской области
  • Наземная инфраструктура СКАНЭКС направленного на реализацию плана мероприятий (дорожной карты) по развитию высокотехнологичного направления Перспективные космические системы и сервисы на период до 2030 года г. Кола
  • Капитальный ремонт в Городской поликлинике № 175 по Новому московскому стандарту поликлиник г. Москва
  • Модернизация центрального узла сети передачи данных в Новороссийском зерновом терминале
  • Модернизация локально-вычислительной сети в группе компаний КНАУФ ГИПС
Сытый Александр
Дежурный сегодня
Сытый Александр

Общие параметры MES5310-48 Eltex

Кол-во портов UPLINK 6
Особенности
Уровень коммутатора L3
MAC таблица 64K
Кол-во портов DOWNLINK 48
Скорость DOWNLINK 10G
Установка в стойку 1U
Разъем для АКБ
PoE
Кол-во устройств в стеке 8
Питание 2 смен.БП
Тип UPLINK 100G
В реестре Минпромторга (ТОРП) Получение
Тип DOWNLINK SFP+
Размер коробки ШхВхГ, мм 440 x 44 x 447
Вес брутто, кг 8.7

Ключевые особенности

  • Высокопроизводительные коммутаторы (до 2,16 Тбит/с)
  • Неблокируемая коммутационная матрица
  • Коммутаторы уровня L3
  • Стекирование до 8 устройств
  • Резервирование источников питания
  • Front-to-Back вентиляция
  • Дублированная система вентиляции

Коммутаторы MES5310-48 — это высокопроизводительные устройства, оснащенные интерфейсами 40GBASE-R и 100GBASE-R и предназначенные для использования в операторских сетях в качестве устройств агрегации и в центрах обработки данных (ЦОД) в качестве Top-of-Rack или End-of-Row коммутаторов.

Интерфейсы

  • 10/100/1000BASE-T (OOB) - 1
  • 1000BASE-X (SFP)/10GBASE-R (SFP+) - 48
  • 40GBASE-R4 (QSFP+)/100GBASE-R4 (QSFP28) - 6
  • USB 2.0 - 1
  • Консольный порт RS-232 (RJ-45) - 1

Общие параметры

  • Пропускная способность - 2,16 Тбит/с
  • Производительность на пакетах длиной 64 байта1 - 1028,5 MPPS
  • Объем буферной памяти - 12 Мбайт
  • Объем ОЗУ (DDR4) - 8 Гбайт
  • Объем ПЗУ (embedded uSSD) - 8 Гбайт
  • Таблица MAC-адресов - 65536
  • Количество ARP-записей2 - 32695
  • Таблица VLAN - 4094
  • Количество L2 Multicast-групп - 4092
  • Количество правил SQinQ - 1320 (ingress), 1320 (egress)
  • Количество правил MAC ACL - 6144
  • Количество правил IPv4/IPv6 ACL - 6144/3036
  • Количество маршрутов L3 IPv4 Unicast3 - 32707
  • Количество маршрутов L3 IPv6 Unicast3 - 8165
  • Количество маршрутов L3 IPv4 Multicast3 - 16335
  • Количество маршрутов L3 IPv6 Multicast3 - 4079
  • Количество VRRP-маршрутизаторов - 127
  • Максимальный размер ECMP-групп - 64
  • Количество VRF - 251 (включая VRF по умолчанию)
  • Количество L3-интерфейсов - 2050
  • Максимальное количество VXLAN - 4093
  • Link Aggregation Groups (LAG) - 128, до 8 портов в одном LAG
  • Качество обслуживания QoS - 8 выходных очередей для каждого порта
  • Размер Jumbo-фреймов - 10240 байт
  • Стекирование - до 8 устройств

Функции интерфейсов

  • Защита от блокировки очереди (HOL)
  • Поддержка обратного давления (Back pressure)
  • Поддержка Auto MDI/MDIX
  • Поддержка сверхдлинных кадров (Jumbo frames)
  • Управление потоком (IEEE 802.3X)
  • Зеркалирование портов (Port Mirroring)
  • Стекирование

Функции при работе с МAC-адресами

  • Независимый режим обучения в каждой VLAN
  • Поддержка многоадресной рассылки (MAC Multicast Support)
  • Регулируемое время хранения MAC-адресов
  • Статические MAC-адреса (Static MAC Entries)
  • Логирование событий MAC Flapping

Поддержка VLAN

  • Поддержка Voice VLAN
  • Поддержка IEEE 802.1Q
  • Поддержка Q-in-Q
  • Поддержка Selective Q-in-Q
  • Поддержка GVRP

Функции L2 Multicast

  • Поддержка профилей Multicast
  • Поддержка статических Multicast-групп
  • Поддержка IGMP Snooping v1,2,3
  • Поддержка IGMP Snooping Fast Leave на основе хоста/порта
  • Поддержка PIM-Snooping
  • Поддержка авторизации IGMP через RADIUS
  • Поддержка MLD Snooping v1,2
  • Поддержка IGMP Querier

Функции L2

  • Поддержка STP (Spanning Tree Protocol, IEEE 802.1d)
  • Поддержка RSTP (Rapid Spanning Tree Protocol, IEEE 802.1w)
  • Поддержка MSTP (Multiple Spanning Tree Protocol, IEEE 802.1s)
  • Поддержка Spanning Tree Fast Link option
  • Поддержка STP Root Guard
  • Поддержка BPDU Filtering
  • Поддержка STP BPDU Guard
  • Поддержка Loopback Detection (LBD)
  • Поддержка ERPS (G.8032v2)
  • Поддержка Flex-link
  • Поддержка PVSTP+
  • Поддержка RPVSTP+

Функции L3

  • Статические маршруты
  • Протоколы динамической маршрутизации RIP, OSPFv2, OSPFv3, BGP4, IS-IS
  • Address Resolution Protocol (ARP)
  • Поддержка протокола VRRP
  • Протоколы динамической маршрутизации мультикаста PIM SM, PIM DM, IGMP Proxy, MSDP
  • Поддержка протокола BFD
  • Поддержка функции IP Unnumbered
  • Поддержка технологии VRF lite

Технология EVPN/VXLAN5

  • Поддержка сервисов L2VPN
  • Поддержка сервисов L3VPN

Функции Link Aggregation

  • Создание групп LAG
  • Объединение каналов с использованием LACP
  • Поддержка LAG Balancing Algorithm
  • Поддержка Multi-Switch Link Aggregation Group (MLAG)

Поддержка IPv6

  • Функциональность IРv6 Host
  • Совместное использование IРv6, IРv4

Сервисные функции

  • Диагностика оптического трансивера
  • Green Ethernet

Функции обеспечения безопасности

  • DHCP Snooping
  • Опция 82 протокола DHCP
  • IP Source Guard
  • Dynamic ARP Inspection
  • Поддержка sFlow
  • Проверка подлинности на основе MAC-адреса, ограничение количества MAC-адресов, статические MAC-адреса
  • Проверка подлинности на основе IEEE 802.1x
  • Guest VLAN
  • Система предотвращения DoS-атак
  • Сегментация трафика
  • Фильтрация DHCP-клиентов
  • Предотвращение атак BPDU
  • Фильтрация NetBIOS/NetBEUI

Списки управления доступом ACL

  • L2-L3-L4 ACL (Access Control List)
  • Поддержка Time-Based ACL
  • IРv6 ACL
  • ACL на основе:
    • Порта коммутатора
    • Приоритета IEEE 802.1p
    • VLAN ID
    • EtherType
    • DSCP
    • Типа IP-протокола
    • Номера порта TCP/UDP

Основные функции управления

  • Загрузка и выгрузка конфигурационного файла по TFTP/SCP
  • Протокол SNMP
  • Интерфейс командной строки (CLI)
  • Web-интерфейс
  • Syslog
  • SNTP (Simple Network Time Protocol)
  • Traceroute
  • LLDP (802.1ab) + LLDP MED
  • Управление доступом к коммутатору – уровни привилегий для пользователей
  • Списки контроля доступа (Management ACL)
  • Блокировка интерфейса управления
  • Локальная аутентификация
  • Фильтрация IP-адресов для SNMP
  • Клиент RADIUS/TACACS+ (Terminal Access Controller Access Control System)
  • Сервер SSH
  • Сервер Telnet
  • Поддержка SSL
  • Поддержка макрокоманд
  • Журналирование вводимых команд
  • Системный журнал
  • Автоматическая настройка DHCP
  • DHCP Relay (Option 82)
  • DHCP Option 12
  • Сервер DHCP
  • Команды отладки
  • Механизм ограничения трафика в сторону CPU
  • Шифрование паролей
  • Восстановление пароля
  • Ping (IPv4/IPv6)

Функции мониторинга

  • Статистика интерфейсов
  • Удаленный мониторинг RMON/SMON
  • Мониторинг загрузки CPU по задачам и типу трафика
  • Мониторинг температуры
  • Мониторинг TCAM
  • Поддержка IPFIX

Основные функции качества обслуживания (QoS) и ограничение скорости

  • Статистика QoS
  • Ограничение скорости на портах (Shaping, Policing)
  • Поддержка класса обслуживания IEEE 802.1р
  • Защита от широковещательного шторма
  • Управление полосой пропускания
  • Обработка очередей по алгоритмам Strict Priority/Weighted Round Robin (WRR)
  • Три цвета маркировки
  • Назначение меток CoS/DSCP на основании ACL
  • Назначение меток VLAN на основании ACL
  • Настройка приоритетов 802.1p для VLAN управления
  • Перемаркировка DSCP to CoS, CoS to DSCP
  • Назначение меток 802.1p DSCP для протокола IGMP

OAM

  • 802.3ah Ethernet Link OAM
  • 802.3ah Unidirectional Link Detection (протокол обнаружения однонаправленных линков)

MIB

  • RFC 1065, 1066, 1155, 1156, 2578 MIB Structure
  • RFC 1212 Concise MIB Definitions
  • RFC 1213 MIB II
  • RFC 1215 MIB Traps Convention
  • RFC 1493, 4188 Bridge MIB
  • RFC 1157, 2571-2576 SNMP MIB
  • RFC 1901-1908, 3418, 3636, 1442, 2578 SNMPv2 MIB
  • RFC 1271, 1757, 2819 RMON MIB
  • RFC 2465 IPv6 MIB
  • RFC 2466 ICMPv6 MIB
  • RFC 2737 Entity MIB
  • RFC 4293 IPv6 SNMP Mgmt Interface MIB
  • Private MIB
  • RFC 3289 DIFFSERV MIB
  • RFC 2021 RMONv2 MIB
  • RFC 1398, 1643, 1650, 2358, 2665, 3635 Ether-like MIB
  • RFC 2668 IEEE 802.3 MAU MIB
  • RFC 2674, 4363 IEEE 802.1p MIB
  • RFC 2233, 2863 IF MIB
  • RFC 2618 RADIUS Authentication Client MIB
  • RFC 4022 MIB для TCP
  • RFC 4113 MIB для UDP
  • RFC 3298 MIB для Diffserv
  • RFC 2620 RADIUS Accounting Client MIB
  • RFC 2925 Ping & Traceroute MIB
  • RFC 768 UDP
  • RFC 791 IP
  • RFC 792 ICMPv4
  • RFC 2463, 4443 ICMPv6
  • RFC 4884 Extended ICMP для поддержки сообщений Multi-Part
  • RFC 793 TCP
  • RFC 2474, 3260 Определение поля DS в заголовке IPv4 и IPv6
  • RFC 1321, 2284, 2865, 3580, 3748 Extensible Authentication Protocol (EAP)
  • RFC 2571-2574 SNMP
  • RFC 826 ARP
  • МЭК 61850

Физические характеристики и условия окружающей среды

  • Питание
    • 176–264 В AC, 50–60 Гц
    • 36–72 В DC
  • Варианты питания:
    • один источник питания постоянного или переменного тока
    • два источника питания постоянного или переменного тока с возможностью горячей замены
  • Максимальная потребляемая мощность - не более 170 Вт
  • Тепловыделение - 170 Вт
  • Аппаратная поддержка Dying Gasp - нет
  • Рабочая температура окружающей среды от 0 до +45 °С
  • Температура хранения от -50 до +70 °С
  • Рабочая влажность не более 80 %
  • Вентиляция - Front-to-Back, 4 вентилятора
  • Габариты (Ш × В × Г) - 440 × 44 × 447 мм
  • Масса - 8,7 кг

Значения указаны для односторонней передачи

Для каждого хоста в ARP-таблице создается дополнительная запись в таблице коммутации. Количество ARP-записей с установленной лицензией EVPN 30647

Маршруты IPv4/IPv6 Unicast/Multicast используют общие аппаратные ресурсы

Поддержка протокола BGP предоставляется по лицензии

Поддержка технологии EVPN предоставляется по лицензии

MES5310-48
Ethernet-коммутатор MES5310-48, 1×10/100/1000BASE-T (OOB), 48×1000BASE-X (SFP)/10GBASE-R (SFP+), 6×40GBASE-R (QSFP+)/100GBASE-R (QSFP28), 1×USB 2.0, коммутатор L3
PM350-220/12
Модуль питания PM350-220/12, 220V AC, 350W
PM350-48/12
Модуль питания PM350-48/12, 48V DC, 350W
Паспорт
Паспорт
Сертификат
Сертификат
Комплект крепления в 19"стойку
Комплект крепления в 19"стойку
Сертификаты на гарантию, замену, техподдержку
Скачать регламент
Продление гарантийного обслуживания, MES5310-48 (используется при покупке с новым оборудованием. Включена в т.ч. стандартная гарантия производителя - 1 год)
[ для нового оборудования ]
до 2 лет, цена: 15% от стоимости оборудования
Артикул: EW-MES5310-48-2Y
до 3 лет, цена: 25% от стоимости оборудования
Артикул: EW-MES5310-48-3Y
до 5 лет, цена: 40% от стоимости оборудования
Артикул: EW-MES5310-48-5Y
Продление гарантийного обслуживания, MES5310-48 (используется при покупке для ранее приобретенного оборудования)
[ для уже купленного оборудования ]
на 1 год, цена: 12% от стоимости оборудования
Артикул: EW-MES5310-48-1Y
Сертификат на консультационные услуги по вопросам эксплуатации оборудования Eltex - MES5310-48 - безлимитное количество обращений 8х5 (услуга оказывается по московскому времени)
1 год, цена: 5% от стоимости оборудования
Артикул: SC-MES5310-48-B-1Y
3 года, цена: 12,5% от стоимости оборудования
Артикул: SC-MES5310-48-B-3Y
5 лет, цена: 30% от стоимости оборудования
Артикул: SC-MES5310-48-B-5Y
Сертификат на консультационные услуги по вопросам эксплуатации оборудования Eltex - MES5310-48 - безлимитное количество обращений 24х7 (услуга оказывается по московскому времени)
1 год, цена: 7,5% от стоимости оборудования
Артикул: SC-MES5310-48-A-1Y
3 года, цена: 18,75% от стоимости оборудования
Артикул: SC-MES5310-48-A-3Y
5 лет, цена: 40% от стоимости оборудования
Артикул: SC-MES5310-48-A-5Y
Сертификат на услугу по отправке оборудования на подмену на следующий рабочий день (next business shipping) в случае выхода из строя оборудования, MES5310-48 (услуга оказывается при наличии действующей гарантии)
1 год, цена: 30% от стоимости оборудования
Артикул: NBS-MES5310-48-1Y
3 года, цена: 75% от стоимости оборудования
Артикул: NBS-MES5310-48-3Y
5 лет, цена: 93,75% от стоимости оборудования
Артикул: NBS-MES5310-48-5Y
Обучение в Академии Eltex
Базовый курс Академии Eltex: Использование коммутаторов Eltex
Базовый курс Академии Eltex: Использование маршрутизаторов Eltex
Базовый курс Академии Eltex: Точки доступа Enterprise и Контроллер беспроводной сети Eltex
[MES] Настройка ITU-T G.8032v2 (ERPS)
Протокол ERPS (Ethernet Ring Protection Switching) предназначен для повышения устойчивости и надежности сети передачи данных, имеющей кольцевую топологию, за счет снижения времени восстановления сети в случае аварии.

Время восстановления не превышает 1 секунды, что существенно меньше времени перестройки сети при использовании протоколов семейства spanning tree.

Пример конфигурирования

Настроим ревертивное кольцо с подкольцом, использующим кольцо в качестве виртуального канала. Для прохождения служебного ERPS трафика в кольце используется VLAN 10 (R-APS VLAN), защищает VLAN 20, 30, 40, 200, 300, 400. Для прохождения служебного ERPS  трафика в подкольце используется VLAN 100, защищает VLAN 200, 300, 400. Так как кольцо будет использоваться в качестве виртуального канала для подкольца, в настройках коммутаторов, которые не знают о существовании подкольца (коммутаторы 1 и 2), необходимо указать все VLAN подкольца.

В качестве RPL линка в основном кольце возьмем линк между коммутаторами 1 и 2. В качестве RPL линка в подкольце возьмем линк между коммутаторами 5 и 6. RPL линк — это линк, который будет заблокирован при нормальном состоянии кольца, и разблокируется только в случае аварии на одном из линков кольца.

Линк между коммутаторами 3 и 4 для подкольца vlan 100 будет определяться как virtual link.

Примечания:

  • Подкольцо не умеет определять разрыв виртуального линка. Поэтому при разрыве этого линка в подкольце не разблокируется rpl-link.
  • По дефолту через интерфейс в режим trunk проходит дефолтный 1 VLAN. Поэтому данный VLAN необходимо или добавить в protected, или запретить его прохождение через интерфейс, чтобы избежать возникновение шторма.
  • RPL link блокирует прохождение трафика в protected VLAN. Но на семейство протоколов xSTP данная блокировка не растространяется. Поэтому необходимо запрещать прохождение STP bpdu через кольцевые порты.

 

Конфигурация коммутатора 1

  • console(config)#erps
  • console(config)#erps vlan 10
  • console(config-erps)#ring enable
  • console(config-erps)#port west te1/0/1
  • console(config-erps)#port east te1/0/2
  • console(config-erps)#protected vlan add 20,30,40,100,200,300,400
  • console(config-erps)#rpl west owner
  • console(config-erps)#exit
  • console(config)#
  • console(config)#interface range TengigabitEthernet1/0/1-2
  • console(config-if)#switchport mode trunk
  • console(config-if)#switchport trunk allowed vlan add 10,20,30,40
  • console(config-if)#switchport forbidden default-vlan
  • console(config-if)#exit
  • console(config)#spanning-tree bpdu filtering 
  •  

Конфигурация коммутатора 2

  • console(config)#erps
  • console(config)#erps vlan 10
  • console(config-erps)#ring enable
  • console(config-erps)#port west te1/0/1
  • console(config-erps)#port east te1/0/2
  • console(config-erps)#protected vlan add 20,30,40
  • console(config-erps)#rpl west neighbor
  • console(config-erps)#exit
  • console(config)#
  • console(config)#interface range TengigabitEthernet1/0/1-2
  • console(config-if)#switchport mode trunk
  • console(config-if)#switchport trunk allowed vlan add 10,20,30,40
  • console(config-if)#switchport forbidden default-vlan
  • console(config-if)#exit
  • console(config)#spanning-tree bpdu filtering 

Конфигурация коммутатора 3, 4

  • console(config)#erps
  • console(config)#erps vlan 10
  • console(config-erps)#ring enable
  • console(config-erps)#port west tengigabitethernet1/0/1
  • console(config-erps)#port east tengigabitethernet1/0/2
  • console(config-erps)#protected vlan add 20,30,40
  • console(config-erps)#sub-ring vlan 100
  • console(config-erps)#exit
  • console(config)#erps vlan 100
  • console(config-erps)#ring enable
  • console(config-erps)#port west tengigabitethernet1/0/3
  • console(config-erps)#protected vlan add 200,300,400
  • console(config-erps)#exit
  • console(config)#
  • console(config)#interfaceTengigabitEthernet1/0/1
  • console(config-if)#switchport mode trunk
  • console(config-if)#switchport trunk allowed vlan add 10,20,30,40
  • console(config-if)#switchport forbidden default-vlan
  • console(config-if)#exit
  • console(config)#interfaceTengigabitEthernet1/0/2
  • console(config-if)#switchport mode trunk
  • console(config-if)#switchport trunk allowed vlan add 10,20,30,40,100,200,300,400
  • console(config-if)#switchport forbidden default-vlan
  • console(config-if)#exit
  • console(config)#interfaceTengigabitEthernet1/0/3
  • console(config-if)#switchport mode trunk
  • console(config-if)#switchport trunk allowed vlan add 100,200,300,400
  • console(config-if)#switchport forbidden default-vlan
  • console(config-if)#exit
  • console(config)#spanning-tree bpdu filtering 

Конфигурация коммутатора 5

  • console(config)#erps
  • console(config)#erps vlan 100
  • console(config-erps)#ring enable
  • console(config-erps)#port west te1/0/1
  • console(config-erps)#port east te1/0/2
  • console(config-erps)#protected vlan add 200,300,400
  • console(config-erps)#rpl west owner
  • console(config-erps)#exit
  • console(config)#
  • console(config)#interface range TengigabitEthernet1/0/1-2
  • console(config-if)#switchport mode trunk
  • console(config-if)#switchport trunk allowed vlan add 100,200,300,400
  • console(config-if)#switchport forbidden default-vlan
  • console(config-if)#exit
  • console(config)#spanning-tree bpdu filtering 

Конфигурация коммутатора 6

  • console(config)#erps
  • console(config)#erps vlan 100
  • console(config-erps)#ring enable
  • console(config-erps)#port west te1/0/1
  • console(config-erps)#port east te1/0/2
  • console(config-erps)#protected vlan add 200,300,400
  • console(config-erps)#rpl west neighbor
  • console(config-erps)#exit
  • console(config)#interface range TengigabitEthernet1/0/1-2
  • console(config-if)#switchport mode trunk
  • console(config-if)#switchport trunk allowed vlan add 100,200,300,400
  • console(config-if)#switchport forbidden default-vlan
  • console(config-if)#exit
  • console(config)#spanning-tree bpdu filtering 

Статус колец можно посмотреть командами

  • console#show erps
  • console#show erps vlan 10
  • console#show erps vlan 100

Источник:
docs.eltex-co.ru

[MES] MES5448. Настройка QOS
Нумерация выходных очередей начинается с 0. 7 очередь зарезервирована под стек. Match'инг трафика настраивается в class-map. Далее class-map привязывается к policy-map. Затем policy-map к интерфейсу.

Весь L3-трафик на интерфейсе 1/0/1 с DSCP равной 0 перекрасить в значение DSCP 16. Направить трафик во 2 выходную очередь: 

Пример настройки:

diffserv
class-map match-all class_DSCP_16
match ip dscp 0
exit

policy-map set_DSCP_16 in
class class_DSCP_16
assign-queue 2
mark ip-dscp 16
exit
!
interface 1/0/10
service-policy in set_DSCP_16
no shutdown
exit

Начиная с версии 8.4.0.1 можно будет привязывать acl к class-map.

 

Весь трафик, для которого нет настроек class-map будет подчиняться глобальным настройкам QOS.

Источник:
docs.eltex-co.ru

[MES] MES5448.Настройка port-channel
Настройка LAG:

Добавить порт в port-channel по LACP:

5448(Config)#interface 1/0/3
5448(Interface 1/0/2)#addport lag 1
5448(Interface 1/0/2)#interface lag 1
5448(Interface lag 1)#no port-channel static

Добавить порт в статический port-channel:

5448(Config)#interface 1/0/3
5448(Interface 1/0/2)#addport lag 1

Удаление порта из port-channel:
5448(Interface 1/0/2)#deleteport lag 1

 

Посмотреть настройки port-channel можно командами:

show port-channel brief

show port-channel <number lag>

 

Примечание:  В show running-config/show interfaces status  можно увидеть интерфейсы 0/3/1-0/3/x- это непосредственной интерфейсы lag, т.е lag 1 = 0/3/1, lag 2 = 0/3/2 и т.д.

Источник:
docs.eltex-co.ru

[MES] Multicast BGP (mBGP) на MES5312, MES5314A, MES5324A, MES5332A
Multicast BGP позволяет разделить трафик Unicast и Multicast и пустить его по разным маршрутам. В случае использования mBGP создается отдельная таблица маршрутизации для мультикаст-трафика.

Multicast BGP позволяет разделить трафик Unicast и Multicast и пустить его по разным маршрутам.

В случае использования mBGP создается отдельная таблица маршрутизации для мультикаст-трафика.

 

Пример настройки SW1 для данной схемы:

 

Отключаем STP, добавляем vlan в database, настраиваем порты и IP-адреса, включаем PIM

console(config)# no spanning-tree
console(config)# vlan 10,20


console(config)# interface tengigabitethernet1/0/1
console(config-if)# switchport access vlan 10


console(config)# interface tengigabitethernet1/0/2
console(config-if)# switchport access vlan 20


console(config)# interface vlan 10
console(config-if)# ip address 1.1.1.1 255.255.255.252
console(config-if)# ip pim


console(config)# interface vlan 20
console(config-if)# ip address 2.2.2.1 255.255.255.252
console(config-if)# ip pim


console(config)# interface loopback 1
console(config-if)# ip address 4.4.4.4 255.255.255.255

Включаем PIM глобально
console(config)#  ip multicast-routing pim

Настраиваем BGP

console(config)# router bgp 64100
console(config-bgp)# bgp router-id 4.4.4.4

Включаем Unicast и Multicast AF глобально для BGP

console(config-bgp)# address-family ipv4 unicast
console(config-bgp-af)# exit

console(config-bgp)# address-family ipv4 multicast
console(config-bgp-af)# exit

Настраиваем соседей


console(config-bgp)# neighbor 1.1.1.2
console(config-bgp-nbr)# remote-as 64100
console(config-bgp-nbr)# update-source vlan 10

Включаем AF multicast на соседе, от данного соседа будут приниматься только мультикаст-маршруты в отдельную таблицу маршрутизации. Для использования AF multicast на соседе она должна быть включена глобально.
console(config-bgp-nbr)# address-family ipv4 multicast
console(config-bgp-nbr-af)# exit
console(config-bgp-nbr)# exit

Настраиваем второго соседа аналогично. Для данного соседа разрешена только AF unicast.
console(config-bgp)# neighbor 2.2.2.1
console(config-bgp-nbr)# remote-as 64100
console(config-bgp-nbr)# update-source vlan 20
console(config-bgp-nbr)# address-family ipv4 unicast
console(config-bgp-nbr-af)# exit
console(config-bgp-nbr)# exit
console(config-bgp)# exit

Задаем PIM RP-адрес


console(config)# ip pim rp-address 1.1.1.1

 

После включения AF Multicast проверка RPF PIM происходит по таблице мультакст-маршрутов.

 

Диагностика:

show ip bgp all all - показывает вывод обоих таблиц маршрутизации
sh ip bgp all all neighbors - показывает вывод BGP-соседей для обоих AF

Источник:
docs.eltex-co.ru

[MES] qos policy map (MES5448)
Весь L3-трафик на интерфейсе 1/0/1 с DSCP равной 0 перекрасить в значение DSCP 16. Направить трафик во 2 выходную очередь:

Весь L3-трафик на интерфейсе 1/0/1 с DSCP равной 0 перекрасить в значение DSCP 16. Направить трафик во 2 выходную очередь: 

Пример настройки:

diffserv
class-map match-all class_DSCP_16
match ip dscp 0
exit

policy-map set_DSCP_16 in
class class_DSCP_16
assign-queue 2
mark ip-dscp 16
exit
!
interface 1/0/1
service-policy in set_DSCP_16
no shutdown
exit

Начиная с версии 8.4.0.1 можно будет привязывать acl к class-map.

 

Весь трафик, для которого нет настроек class-map будет подчиняться глобальным настройкам QOS.

Источник:
docs.eltex-co.ru

[MES] SNMP. Как включить/выключить порт?
Следующим snmpset можно включить или выключить порт:
  • snmpset -v2c -c <community> <ip> 1.3.6.1.2.1.2.2.1.7.<ifindex> i <value>

<ifIndex> - индекс порта.

Параметр <ifIndex> может принимать следующие значения:

MES1024

  • для интерфейсов fastethernet 1/0/1-24 значения 1-24.
  • для gigabitethernet 1/0/1-2 значения 49-50.

MES1124

  • для интерфейсов fastethernet 1/0/1-24 значения 1-24.
  • для gigabitethernet 1/0/1-2 значения 49-52.

MES2124

  • для gigabitethernet 1/0/1-28 значения 49-76.

MES3000

  • для tengigabitethernet 1/0/1-4 значения 105-108.
  • для gigabitethernet 1/0/1-24 значения 49-72.

value может принимать следующие значения:

  • 1 - up.
  • 2 - down.

Пример

Включение порта gi1/0/1

  • snmpset -v2c -c private 10.10.10.11 1.3.6.1.2.1.2.2.1.7.49 i 1

Выключение порта gi1/0/1

  • snmpset -v2c -c private 10.10.10.11 1.3.6.1.2.1.2.2.1.7.49 i 2

Источник:
docs.eltex-co.ru

[MES] SNMP. Как на коммутаторе MES добавить порты в VLAN?
Рекомендуемый порядок действий:

Пример

Добавить в VLAN100 порт как untagged.

Команда:

snmpset -v2c -c private 192.168.1.1 1.3.6.1.4.1.89.48.68.1.1.<ifIndex> x

0000000000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

1.3.6.1.4.1.89.48.68.1.2. <ifIndex>  x

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

1.3.6.1.4.1.89.48.68.1.3. <ifIndex>  x

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

1.3.6.1.4.1.89.48.68.1.4. <ifIndex>  x

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

1.3.6.1.4.1.89.48.68.1.5. <ifIndex>  x

0000000000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 1.3.6.1.4.1.89.48.68.1.6. <ifIndex>  x

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

1.3.6.1.4.1.89.48.68.1.7. <ifIndex> x

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

1.3.6.1.4.1.89.48.68.1.8. <ifIndex>  x

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Объяснение:

Последняя цифра всех OID(<ifIndex>) задает номер порта. 

  Параметр <ifIndex> может принимать следующие значения:

MES1024 

  • для интерфейсов fastethernet 1/0/1-24 значения 1-24.
  • для gigabitethernet 1/0/1-2 значения 49-50.

MES1124 

  • для интерфейсов fastethernet 1/0/1-24 значения 1-24.
  • для gigabitethernet 1/0/1-2 значения 49-52.

MES2124 

  • для gigabitethernet 1/0/1-28 значения 49-76.

MES3000 

  • для tengigabitethernet 1/0/1-4 значения 105-108.
  • для gigabitethernet 1/0/1-24 значения 49-72.

 

 Все поля - это битовые маски, состоящие из 128 байт (шестнадцатеричных разрядов всего 256). Каждый разряд обозначает четыре VLAN. По номеру VLAN определяется нужное поле  (1to1024, 1025to2048, 2049to3072 или 3073to4094)

Для этого примера соответствующий бит должен быть выставлен в EgressList1to1024 и в UntaggedEgressList1to1024. Остальные биты должны быть сброшены в 0.  
rldot1qPortVlanStaticEgressList1to1024 - 1.3.6.1.4.1.89.48.68.1.1.<ifindex>  
rldot1qPortVlanStaticEgressList1025to2048 - 1.3.6.1.4.1.89.48.68.1.2.<ifindex>  
rldot1qPortVlanStaticEgressList2049to3072 - 1.3.6.1.4.1.89.48.68.1.3.<ifindex>  
rldot1qPortVlanStaticEgressList3073to4094 - 1.3.6.1.4.1.89.48.68.1.4.<ifindex>  
rldot1qPortVlanStaticUntaggedEgressList1to1024 - 1.3.6.1.4.1.89.48.68.1.5.<ifindex>  
rldot1qPortVlanStaticUntaggedEgressList1025to2048 - 1.3.6.1.4.1.89.48.68.1.6.<ifindex>  
rldot1qPortVlanStaticUntaggedEgressList2049to3072 - 1.3.6.1.4.1.89.48.68.1.7.<ifindex>  
rldot1qPortVlanStaticUntaggedEgressList3073to4094 - 1.3.6.1.4.1.89.48.68.1.8.<ifindex>

Источник:
docs.eltex-co.ru

[MES] Автоматическое обновление и конфигурация на MES1400/MES2400
Для успешного автообновления коммутатор должен находиться в заводской конфигурации.

После ввода команд:

console# delete startup-config
console# reload

Конфигурация будет сброшена к заводской и начнется процесс загрузки ПО, начального загрузчика и конфигурации.

Процесс автообновления состоит из следующих этапов:

  1. В пакете DHCP Discover коммутатор запрашивает поддерживаемые опции.

Поддерживаемые опции автоконфигурирования для коммутаторов серии MES24xx:

     43 - Vendor Specific

     66 - Server-Name

     67 - Bootfile-Name

  1. В пакете DHCP ACK в соответствии с настройками сервер предоставляет коммутатору запрашиваемую информацию(ПО, начальный загрузчик, конфигурация, IP адрес TFTP сервера).
  2. Коммутатор загружает ПО в неактивную область и boot файл, затем перезагружается.
  3. После перезагрузки коммутатор загружает файл конфигурации, затем перезагружается.

 

Настройка isc dhcp-server возможна с помощью нескольких опций. Примеры конфигурации сервера:

# Пример настройки с опцией 66-67

option tftp-server code 66 = string;
option bootfile-name code 67 = string;

shared-network "net" {

 

    subnet 192.168.2.0 netmask 255.255.255.0 {

        range 192.168.2.10 192.168.2.99;

 

         option tftp-server "192.168.2.1";             # IP-адресс TFTP сервера

         option bootfile-name "mes2400-1026-R2.iss";   # Имя файла ПО

 

         option routers 192.168.2.1;

         option subnet-mask 255.255.255.0;

         option broadcast-address 192.168.2.254;

    }

}

 

# Пример настройки с опцией 43

option space vendor_43;
option vendor_43.image-name_43 code 1 = string;
option vendor_43.bootfile-name_43 code 2 = string;
option vendor_43.configfile-name_43 code 3 = string;
option vendor_43.tftp-server_43 code 4 = string;

 

shared-network "net" {

 

    subnet 192.168.2.0 netmask 255.255.255.0 {

        range 192.168.2.10 192.168.2.99;

 

        vendor-option-space vendor_43;

        option vendor_43.image-name_43 "mes2400-1026-R2.iss";      # Имя файла ПО

        option vendor_43.bootfile-name_43 "mes2400-1026-R2.boot";  # Имя начального загрузчика

        option vendor_43.configfile-name_43 "startup.conf";         # Имя файла конфигурации

        option vendor_43.tftp-server_43 "192.168.2.1";             # IP-адрес TFTP сервера

 

        option routers 192.168.2.1;

        option subnet-mask 255.255.255.0;

        option broadcast-address 192.168.2.254;

    }

}

 

Примечание:

Порядок загрузки файлов: Boot -> Файл ПО -> Config

Файл ПО не загружается, если версия загружаемого ПО совпадает с версией текущей прошивки.

Boot не загружается, если имя загружаемого boot файла совпадает с именем ранее загруженного файла boot с помощью DHCP опций.

Конфигурация не загружается, если у коммутатора имеется конфигурация в startup-config.

Источник:
docs.eltex-co.ru

[MES] Активация протоколов telnet/ssh
По умолчанию протоколы telnet, ssh отключены. Для включения используются команды: ip ssh server enable ip telnet server enable

По умолчанию протоколы telnet, ssh отключены. Для включения используются команды:

ip ssh server enable

ip telnet server enable

Команды выполняются в exec-режиме.

 

Show-команды для проверки работы:

show ip ssh

show telnetcon

Источник:
docs.eltex-co.ru

[MES] Включение поддержки сверхдлинных кадров (Jumbo Frames) на MES5312 MES5316A MES5324A MES5332A
Способность поддерживать передачу сверхдлинных кадров позволяет передавать данные меньшим числом пакетов. Это снижает объем служебной информации, время обработки и перерывы. Поддерживаются пакеты размером до 10К.

Способность поддерживать передачу сверхдлинных кадров позволяет передавать данные меньшим числом пакетов. Это снижает объем служебной

информации, время обработки и перерывы. Поддерживаются пакеты размером до 10К.

Пример настройки:

  • в режиме глобального конфигурирования разрешить работать с фреймами большого размера командой:

console(config)# port jumbo-frame

  • сохранить конфигурацию и перезагрузить коммутатор.

Источник:
docs.eltex-co.ru

[MES] Включение функции errdisable на MES5312 MES5316A MES5324A MES5332A
На всех линейках коммутаторов mes доступен функционал errdisable. Данная функция позволяет восстановить интерфейс, если тот был отключен по какой-либо причине.

На всех линейках коммутаторов mes доступен функционал errdisable.  Данная функция позволяет восстановить интерфейс, если тот был отключен по какой-либо причине. Причины могут быть разные,  хх  можно посмотреть командой:

console# show errdisable recovery

Timer interval: 300 Seconds

        Reason                          Automatic Recovery
----------------------            ------------------------------
loopback_detection                            Disable
port-security                                 Disable
dot1x-src-address                             Disable
acl-deny                                      Disable
stp-bpdu-guard                                Disable
stp-loopback-guard                            Disable
udld                                          Disable
storm-control                                 Disable
link-flapping                                 Enable

Из вывода видно, что в каких-то причинах защита errdisable уже включена по умолчанию. Рассмотрим пример.

На порту gig0/2 настроим защиту spanning-tree bpduguard. С данной настройкой, если со встречного устройства прилетит bpdu, порт отключится по errdisable:

console(config-if)# do sh run int te 1/0/2
interface te 1/0/2
spanning-tree bpduguard enable
switchport mode trunk
switchport trunk allowed vlan add 100,111-112
!

В лог выведется соответствующее сообщение:

consoe(config-if)#09-Nov-2018 14:39:38 %STP-W-BPDUGRDPRTSUS: te 1/0/2 suspend by BPDU guard.
09-Nov-2018 14:39:38 %LINK-W-PORT_SUSPENDED: Port te 1/0/2 suspended by stp-bpdu-guard

 

Также заблокированные интерфейсы по errdisable можно посмотреть командой:

console# show errdisable interfaces

Interface             Reason
-------------          ------------------
te1/0/2               stp-bpdu-guard

По умолчанию автоматическое восстановление интрефейса отключено. Можно интерфейс поднять вручную командой:

console# set interface active te 1/0/2

Либо настроить автоматическое восстановление:

console(config)# errdisable recovery cause stp-bpdu-guard

Интерфейс поднимется через 300 секунд (по умолчанию) после падения. Данный таймер можно изменить, минимальное значение 30 секунд:

console(config)# errdisable recovery interval
<30-86400> Specify the timeout interval.

Источник:
docs.eltex-co.ru

[MES] Восстановление коммутатора при некорректном обновлении ПО MES1400 MES2400
Если в процессе обновления вместе с версией ПО не был обновлен начальный загрузчик, то коммутатор не сможет загрузиться корректно. Порты не перейдут в UP.

Для восстановления коммутатора понадобиться ПК с tftp-сервером и доступ к коммутатору через консольный порт.

Процесс восстановления сбросит устройство к заводским настройкам.

 

Процесс восстановления:

1) Подключаем консольный кабель и открываем терминальную программу (например, PUTTY).  Соединяем сетевую карту ПК с любым портом коммутатора. Перезагружаем коммутатор по питанию

2) В момент загрузки при появлнии в выводе терминала  "Autoboot in 3 seconds " в течение трех секунд  нужно ввести eltex

В зависимости от версии uboot устройство переходит или сразу в uboot  ( ">>") или в меню начального загрузчика . Если коммутатор перешел сразу в режим uboot  (">>"),  то перейти к пункту 5

3) В начальном загрузчике нажать  сочетание клавиш ctrl+shift+6  и ввести пароль eltex

4) Выбрать Аdvanced menu, нажав клавишу 6

4) Зайти в Shell, нажав клавишу 1.

5) Далее требуется ввести команды по загрузке актуальной версии ПО и начального загрузчика.

192.168.2.1 - ip addess ПК с tftp server

192.168.2.2 - ip addess коммутатора

mes2400-1021-R1.boot - название файла boot на tftp

mes2400-1021-R1.iss - название файла ПО на tftp

 

setenv ipaddr 192.168.2.2
setenv serverip 192.168.2.1
rtk network on

ping 192.168.2.1

 

tftp 0x81000000 mes2400-1021-R1.boot
sf probe 0
sf erase 0xb4000000 0x80000
sf write 0x8100005c 0xb4000000 $(filesize)

tftp 0x81000000 mes2400-1021-R1.iss
sf erase 0xb4140000 0xa00000
sf write 0x81000000 0xb4140000 $(filesize)

reset

Источник:
docs.eltex-co.ru

[MES] Диагностика возможных проблем на коммутаторе при работе с РоЕ устройствами
Модели коммутаторов  MES с суффиксом ‘P’ в обозначении поддерживают электропитание устройств по линии Ethernet в соответствии с рекомендациями IEEE 802.3af (PoE) и IEEE 802.3at (PoE+). Эксплуатировать коммутаторы необходимо только с заземленным корпусом.

При возникновении проблем с питанием PoE устройств понять возможную причину проблемы можно, используя команды: 

1) power inline traps enable.  Добавление в конфигурацию  устройства данной команды разрешает формирование информационных сообщений для подсистемы PoE.  Уровень логирования сообщений должен быть не ниже info 

 

2) show power inline. Команда позволяется посмотреть состояние электропитания всех интерфейсов, поддерживающих питание по линии PoE.

 

Из вывода видно, что на втором порту находится РоЕ устройство класса 3. На первом и третьем портах не обнаружено устройств PoЕ 

3) show power inline [проблемный порт]. Команда позволяется посмотреть состояние электропитания конкретного интерфейса.  Из вывода в динамике, используя счетчики ошибок, можно определить возможные причины конфликтов в подаче PoE

 

 

Status Оперативное состояние электропитания порта. Возможные значения:
Off - питание порта выключено административно
Searching – питание порта включено, ожидание подключения PoE-устройства
On – питание порта включено и есть присоединеннное PoE-устройство
Fault – авария питания порта. PoE-устройство запросило мощность большую, чем
доступно или потребляемая PoE-устройством мощность превысила заданный предел.
Overload Counter Счетчик количества случаев перегрузки по электропитанию
Short Counter Счетчик случаев короткого замыкания
Denied Counter Счетчик случаев отказа в подаче электропитания
Absent Counter Счетчик случаев прекращения электропитания из-за отключения питаемого устройства
Invalid Signature
Counter
Счетчик ошибок классификации подключенных PoE-устройств

 


4) show power inline consumption. Отображает характеристики потребления мощности всех PoE-интерфейсов устройства

 

 

 

 

Каждая отдельна проблема с подачей питания по PoЕ требуют индивидуальной подхода к решению, проблема может быть на стороне конечного устройства РоЕ, кабеля или коммутатора. 

При обращении в службу технической поддержки необходимо предоставить выводы вышеперечисленных команд, а также  команды show version, sh logiging

 

Источник:
docs.eltex-co.ru

[MES] Диагностика возможных проблем при работе с РоЕ устройствами MES1400 MES2400
Модели коммутаторов MES с суффиксом ‘P’ в обозначении поддерживают электропитание устройств по линии Ethernet в соответствии с рекомендациями IEEE 802.3af (PoE) и IEEE 802.3at (PoE+). Эксплуатировать коммутаторы необходимо только с заземленным корпусом.

При возникновении проблем с питанием PoE устройств понять возможную причину проблемы можно, используя команды: 

1)  Команда позволяющая посмотреть состояние электропитания всех интерфейсов, поддерживающих питание по линии PoE:

Команда позволяющая посмотреть состояние электропитания всех интерфейсов, поддерживающих питание по линии PoE:

Из вывода видно, что на девятом порту находится РоЕ устройство класса 3.

2) Посмотреть состояние электропитания конкретного интерфейса можно следующей командой:

show power inline [проблемный порт]

Из вывода в динамике, используя счетчики ошибок, можно определить возможные причины конфликтов в подаче PoE. Пример:

Из вывода в динамике, используя счетчики ошибок, можно определить возможные причины конфликтов в подаче PoE

Status Оперативное состояние электропитания порта. Возможные значения:
Off - питание порта выключено административно
Searching – питание порта включено, ожидание подключения PoE-устройства
On – питание порта включено и есть присоединеннное PoE-устройство
Fault – авария питания порта. PoE-устройство запросило мощность большую, чем
доступно или потребляемая PoE-устройством мощность превысила заданный предел.
Overload Counter Счетчик количества случаев перегрузки по электропитанию
Short Counter Счетчик случаев короткого замыкания

Invalid Signature Counter

Счетчик ошибок классификации подключенных PoE-устройств
Power Denied Counter Счетчик случаев отказа в подаче электропитания
MPS Absent Counter Счетчик случаев прекращения электропитания из-за отключения питаемого устройства


3) Следующая команда отображает характеристики потребления мощности всех PoE-интерфейсов устройства:

show power inline consumption

Пример вывода команды:

Следующая команда отображает характеристики потребления мощности всех PoE-интерфейсов устройства

Каждая отдельная проблема с подачей питания по PoЕ требуют индивидуальной подхода к решению, проблема может быть на стороне конечного устройства РоЕ, кабеля или коммутатора. 

При обращении в службу технической поддержки необходимо предоставить выводы вышеперечисленных команд, а также  команды show bootv, sh logiging

Источник:
docs.eltex-co.ru

[MES] Загрузка первоначальной конфигурации (startup config) на устройство MES1400 MES2400
Для выполнения загрузки файла начальной конфигурации startup config на коммутатор необходимо воспользоваться командой

Для выполнения загрузки файла начальной конфигурации startup config на коммутатор необходимо воспользоваться командой


console# copy tftp://x.x.x.x/test.conf startup-config

 

Имя файла конфигурации на сервере обязательно должно быть с расширением ".conf".

 

В начале файла конфигурации необходимо добавить строку с символом «!».

Источник:
docs.eltex-co.ru

[MES] Загрузка/выгрузка конфигурации с/на TFTP-сервер на MES1024 MES1124 MES2124 MES31XX

Для того, чтобы произвести загрузку/выгрузку файла конфигурации с использованием CLI необходимо подключиться к коммутатору при помощи терминальной программы (например HyperTerminal) по протоколу Telnet или SSH, либо через последовательный порт.

Для загрузки файла первоначальной конфигурации с TFTP сервера необходимо в командной строке CLI ввести команду:

console# copy tftp:// xxx.xxx.xxx.xxx/File_Name startup-config

где

  • xxx.xxx.xxx.xxx – IP-адрес TFTP сервера, с которого будет производиться загрузка конфигурационного файла;
  • File_Name – имя конфигурационного файла;

и нажать Enter. В окне терминальной программы должно появиться следующее сообщение:

Overwrite file [startup-config] ?[Yes/press any key for no]....

Для записи конфигурационного файла необходимо нажать клавишу y. Если загрузка файла прошла успешно, то появится сообщение вида:

COPY-N-TRAP: The copy operation was completed successfully

Для выгрузки файла первоначальной конфигурации на TFTP сервер необходимо в командной строке CLI ввести следующую команду: 

console# copy startup-config tftp:// xxx.xxx.xxx.xxx/File_Name

где

  • xxx.xxx.xxx.xxx – IP-адрес TFTP сервера, на который будет производиться выгрузка конфигурационного файла;
  • File_Name – имя конфигурационного файла;

и нажать Enter. Если выгрузка файла прошла успешно, то появится сообщение вида:

COPY-N-TRAP: The copy operation was completed successfully

Источник:
docs.eltex-co.ru

[MES] Загрузка/выгрузка конфигурации с/на TFTP-сервер на MES1400/ MES2400
Для того, чтобы произвести загрузку/выгрузку файла конфигурации с использованием CLI необходимо подключиться к коммутатору при помощи терминальной программы (например HyperTerminal) по протоколу Telnet или SSH, либо через последовательный порт.

Для загрузки файла первоначальной конфигурации с TFTP сервера необходимо в командной строке CLI ввести команду:

console# copy tftp:// xxx.xxx.xxx.xxx/File_Name startup-config

где

  • xxx.xxx.xxx.xxx – IP-адрес TFTP сервера, с которого будет производиться загрузка конфигурационного файла;
  • File_Name – имя конфигурационного файла;

и нажать Enter.

Для выгрузки файла первоначальной конфигурации на TFTP сервер необходимо в командной строке CLI ввести следующую команду: 

console# copy startup-config tftp:// xxx.xxx.xxx.xxx/File_Name

где

  • xxx.xxx.xxx.xxx – IP-адрес TFTP сервера, на который будет производиться выгрузка конфигурационного файла;
  • File_Name – имя конфигурационного файла;

и нажать Enter.

Источник:
docs.eltex-co.ru

[MES] Запрет добавления дефолтного VLAN на порту на MES1400 MES2400
Необходимо в режиме настройки Ethernet интерфейса выполнить команду:

Необходимо в режиме настройки Ethernet интерфейса выполнить команду:

console(config-if)# switchport forbidden default-vlan

Источник:
docs.eltex-co.ru

[MES] Запрет пакетов DHCP (bootpc) с клиентского порта на MES5312, MES5316A, MES5324A, MES5332A
Для предотвращения появления DHCP серверов на клиентских портах нужно использовать ACL.

Для предотвращения появления DHCP серверов на клиентских портах нужно использовать ACL.

Пример создания ACL. Порты 1-9 клиентские. Порт 10 uplink
1) Создаем IP ACL для запрета трафика bootpc (port 68).  В конце ACL добавляем правило для пропуска остального трафика. ACL работает только для входящего в порт трафика:

ip access-list extended dhcp
 deny udp any any any bootpc
 permit ip any any any any
exit


2) Назначаем ACL на клиентские порты:

interface range TengigabitEthernet0/1-9
service-acl input dhcp

 

Источник:
docs.eltex-co.ru

[MES] Запретить динамическое обучение igmp snooping mrouter порта MES1400 MES2400
Для запрета динамического обучения mrouter порта в таблице igmp snooping нужно воспользоваться acl.  IP ACL фильтрует igmp query пакеты, таким образом запрещает изучение динамического igmp snooping mrouter порта

Создаем смещение для использования в ACL

console(config)#user-defined offset 1 l4 0

 

Создаем IP ACL

console(config)# ip access-list extended 1001
console(config)# deny 2 any any user-defined offset1 0x1100 0xff00

2 - номер протокола IGMP

0x1100 0xff00  - фильтрация по типу пакета (IGMP Membership Query (MQ) messages )

 

Создаем разрешающий IP ACL для пропуска всего трафика

console(config)# ip access-list extended 64000

 

Привязываем к оба ACL к нужному порту

console(config)#  interface gigabitethernet 0/1
console(config-if)# ip access-group 1001 in
console(config-if)# ip access-group 64000 in

 

C версии 10.2.6.3 для блокировки динамического обучения mrouter портов можно воспользоваться командой в контексте настройки multicast vlan

 

console(config)# vlan X
console(config-if)# ip igmp snooping
console(config-if)# ip igmp snooping blocked-router gigabitethernet 0/x

 

где gigabitethernet 0/x - даунлинк порты

Источник:
docs.eltex-co.ru

[MES] Запуск вывода отладок debug в консоль или удаленную сессию на MES1400/ MES2400
На коммутаторах серии 14хх/24хх есть возможность запуска отладочных команд debug. Перед запуском команд следует настроить вывод отладочной информации в локальную сессию по консоли, в удаленную сессию или в файл на флеш.

Настройки в локальную сессию (при подключении по консоли):

config#debug-logging console

console(config)#debug console

 

Вывод в текущую удаленную сессию:

 

console#debug terminal take

 

console(config)#debug console

 

Вывод информации в файл

console(config)#debug-logging file

Файл с логами находится в директории dir LogDir/Debug

Источник:
docs.eltex-co.ru

[MES] Импорт и анонсирование маршрутов в BGP на MES5312, MES5314A, MES5324A, MES5332A
В протокол BGP возможно перераспределить маршруты других протоколов динамической маршрутизации, статических маршрутов, а также добавить connected-сети. Редистрибьюция настраивается в рамках Address Family:

В протокол BGP возможно перераспределить маршруты других протоколов динамической маршрутизации, статических маршрутов, а также добавить connected-сети.

Редистрибьюция настраивается  в рамках Address Family:

 

Анонсирование определенной подсети в BGP:

console(router-bgp-af)# network 20.20.20.0 mask 255.255.255.0

Анонсирование connected-сетей

console(router-bgp-af)# redistribute connected 

Импорт маршрутов RIP в BGP

console(router-bgp-af)# redistribute rip

Анонсирование статических маршрутов, добавленных на коммутаторе

console(router-bgp-af)# redistribute static

Импорт маршрутов OSPF в BGP

console(router-bgp-af)# redistribute ospf

 

Возможно использовать фильтрацию передаваемых маршрутов при помощи ACL (на примере OSPF):

console(config)#ip access-list 1 permit 20.20.20.0/24
console(router-bgp-af)# redistribute ospf filter-list 1

Также возможно фильтровать на основании метрик.

Источник:
docs.eltex-co.ru

[MES] Использование 100-метрового кабеля категории Cat5e при питании устройств по PoE
Согласно группе стандартов питания PoE IEEE802.3 устройства-потребители, питающиеся по PoE при использовании стометрового кабеля категории Cat5e , не должны потреблять более:
  • 12,95 Вт - для устройств классов 0, 3
  • 3,84 Вт - для устройств класса 1
  • 6,49 Вт - для устройств класса 2
  • 25,5 Вт - для устройств класса 4

Класс

Стандарт

Мощность на порт, Вт

Мощность на устройство, Вт

0

802.3af/802.3at

15,4

0,44 - 12,92

1

802.3af/802.3at

4,5

0,44 - 3,84

2

802.3af/802.3at

7

3,84 - 6,49

3

802.3af/802.3at

15,4

6,49 - 12,95

4

802.3at

30

12,95 - 25,5

Разница между мощностью на порту и мощностью на питаемом устройстве обусловлена тем, что жилы кабеля имеют сопротивление (более высокие значения способствуют большей потери мощности в кабеле), следовательно, выходная мощность питающего устройства выше входной мощности питаемого устройства. Часть мощности теряется в кабеле.

Длина PoE

Согласно стандартов 802.3af и 802.3at длина кабеля для PoE заявляется равной 100 метрам. Однако на практике максимальная длина витой пары PoE зависит от многих факторов, в том числе заранее неизвестных:

  • сечения проводников;
  • металла проводников;
  • количества изгибов на линии;
  • наводок, неравномерных характеристик витой пары.

Со скидкой на перегибы и прочее максимальная длина кабеля PoE желательна не более 75 метров. 
Кабели хорошего качества (с малым сопротивлением) позволяют питать устройства на расстоянии до 100 метров.

Источник:
docs.eltex-co.ru

[MES] Как настроить коммутатор MES3000 для работы в стеке?
Стек MES3000 функционирует как единое устройство и может состоять из 8 устройств, имеющих следующие роли, определяемые их порядковыми номерами (UID):
  • Master (UID устройства 1 или 2), с него происходит управление всеми устройствами в стеке.
  • Backup (UID устройства 1 или 2) – устройство, подчиняющееся master. Дублирует все настройки, и, в случае выхода управляющего устройства из строя, берущее на себя функции управления стеком.
  • Slave (UID устройств от 3 до 8) – устройства, подчиняющееся master. Не может работать в автономном режиме (если отсутствует master).

В режиме стекирования MES3124/MES3124F и MES3224/MES3224F используют XG3 и XG4 порты для синхронизации, при этом эти порты не участвуют в передаче данных.MES3108/MES3108F и MES3116/MES3116F используютдля синхронизации только один порт - XG2, при этом этот порт не участвуют в передаче данных. Возможны две топологии синхронизирующихся устройств – кольцевая и линейная. Рекомендуется использовать кольцевую топологию для повышения отказоустойчивости стека.

Устройства с одинаковыми UID не могут работать в одном и том же стеке.

 

Настройка коммутатора для работы в стеке производится через меню начального загрузчика (Startup Menu).

Для входа в меню Startup необходимо прервать загрузку нажатием клавиши <Esc> или <Enter> в течение первых двух секунд после появления сообщения автозагрузки (по окончании выполнения процедуры POST).

Появится следующее меню:

  • Startup Menu
  • [1] Download Software
  • [2] Erase Flash File
  • [3] Password Recovery Procedure
  • [4] Set Terminal Baud-Rate
  • [5] Stack menu
  • [6] Back
  • Enter your choice or press 'ESC' to exit:

Необходимо выбрать пункт [5] Stack menu, нажав клавишу <5>.

Появится следующее меню:

  • Stack menu
  • [1] Show unit stack id
  • [2] Set unit stack id
  • [3] Set unit working mode
  • [4] Back
  • Enter your choice or press 'ESC' to exit:

описание которого приведено в таблице ниже.

Описание меню Stackmenuработа с параметрами стека устройства

Название пункта меню

Описание

<1>

Show unit stack id

Просмотр идентификатора устройства в стеке

Для просмотра идентификатора устройства в стеке нажмите клавишу <1>:

Current working mode is stacking.

Unit stack id set to 1.

<2>

Set unit stack id

Назначение идентификатора устройства в стеке

Для назначения идентификатора устройства в стеке нажмите клавишу <2>:

Enter unit stack id [0-8]: 1

Unit stack id updated to 1.

где

значение от «1» до «8» – номер устройства в стеке,

значение «0» - автономный режим работы коммутатора.

Для возврата в меню стека нажмите клавишу <enter>.

==== PressEnterToContinue====

<3>

Set unit working mode

Установка режима работы устройства

Для установки режима работы устройства нажмите клавишу <3>:

Enter unit working mode [1- standalone, 2- stacking]:1

Unit working mode changed to standalone.

где

значение 1 – автономный режим,

значение 2 – режим стекирования.

Для возврата в меню стека нажмите клавишу <enter>.

==== Press Enter To Continue ====

<4>

Back

Выход из меню

Для выхода из меню нажмите клавишу <4>

 

Настройка режима стека из cli производится с помощью команды:

  • console#unit mode
  •   standalone           Standalone unit without stack support.
  •   stackable            Stackable unit.

Для назначения UID используются команды:

  • console#unit renumber local after-reset {unit_id}
  •   <1-8>                New unit number after reset.
  • unit renumber {current_id} after-reset {new_id}
  • <1-8>                New unit number after reset.

 

Примечание по работе стека:

При отключении мастера (unit 1) из стека. Бэкап (unit 2) доинициализируется до мастера за 10-15 сек.  На бекап (unit 2) коммутаторе резервируется конфигурация.
Если в момент возврата unit 1 аптайм unit2 будет менее 10 минут, unit1 вновь возьмет на себя мастерство (при этом unit 2 перезагрузится. Если аптайм uni2 будет больше, чем 10 минут, то uni2 останется мастером, а unit1 возьмёт на себя роль backup коммутатора.

Источник:
docs.eltex-co.ru

[MES] Как ограничить число tcp-syn запросов
На коммутаторах mes реализован функционал security-suite. Используя security-suite можно настроить порог syn-запросов на определенный ip-адрес/подсеть с целью защиты от syn-атак.

Пример настройки:

 

Глобально включить security-suite:

2324B(config)#security-suite enable

 

Настроить на порту порог:

2324B(config)#interface gig0/1
2324B(config-if)#security-suite dos syn-attack 127 192.168.11.0 /24

127 - максимальное число подключений в секунду

 

Посмотреть security-suite можно командой show security-suite configuration.

2324B#show security-suite configuration

Security suite is enabled (Per interface rules are enabled). 

Denial Of Service Protect: 

Denial Of Service SYN-FIN Attack is enabled
Denial Of Service SYN Attack

Interface IP Address SYN Rate (pps) 
-------------- -------------------- ----------------------- 
gi1/0/1 192.168.11.0/24 127


Martian addresses filtering
Reserved addresses: disabled
Configured addresses:

 

SYN filtering

Interface IP Address TCP port 
-------------- ---------------------- --------------------

ICMP filtering

Interface IP Address 
-------------- ----------------------

 

Fragmented packets filtering

Interface IP Address 
-------------- ----------------------

 

2324B#

Источник:
docs.eltex-co.ru

[MES] Конфигурация DHCP Relay на MES1400/MES2400
Коммутаторы поддерживают функции DHCPRelayагента. Задачей DHCPRelayагента является передача DHCP-пакетов от клиента к серверу и обратно в случае, если DHCP-сервер находится в од-ной сети, а клиент в другой. Другой функцией является добавление дополнительных опций в DHCP-запросы клиента (например, опции 82).

Принцип работы DHCP Relay агента на коммутаторе: коммутатор принимает от клиента DHCP-запросы, передает эти запросы серверу от имени клиента (оставляя в запросе опции с требуемыми клиентом параметрами и, в зависимости от конфигурации, добавляя свои опции). Получив ответ от сервера, коммутатор передает его клиенту.Совместная работа dhcprelay и dhcpsnooping в текущей версии невозможна.

Пример настройки коммутатора:

console# configure terminal

console(config)# vlan 2-3

console(config-vlan-range)# vlan active

console(config-vlan-range)# exit

console(config)# interface vlan 2

console(config-if)# ip add 192.168.2.2 255.255.255.0

console(config-if)# no shutd

console(config-if)# exit

console(config)# int vl 3

console(config-if)# ip add 192.168.1.2 255.255.255.0

console(config-if)# no shutd

console(config-if)# exit

console(config)# service dhcp-relay

console(config)# ip dhcp server 192.168.1.1

console(config)# interface gigabitethernet 0/1

console(config-if)# switchport mode access

console(config-if)# switchport access vlan 2

console(config-if)# interface gigabitethernet 0/2

console(config-if)# switchport mode access

console(config-if)# switchport access vlan 3

Источник:
docs.eltex-co.ru

[MES] Конфигурация DHCP Relay на MES5448
Коммутаторы поддерживают функции DHCP Relay агента. Задачей DHCP Relay агента является передача DHCP-пакетов от клиента к серверу и обратно в случае, если DHCP-сервер находится в одной сети, а клиент в другой. Принцип работы DHCP Relay агента на коммутаторе: коммутатор принимает от клиента DHCP- запросы, передает эти запросы серверу от имени клиента (оставляя в запросе опции с требуемыми клиентом параметрами и, в зависимости от конфигурации, добавляя свои опции). Получив ответ от сервера, коммутатор передает его клиенту.

Коммутаторы поддерживают функции DHCP Relay агента. Задачей DHCP Relay агента является передача DHCP-пакетов от клиента к серверу и обратно в случае, если DHCP-сервер находится в одной сети, а клиент в другой. Принцип работы DHCP Relay агента на коммутаторе: коммутатор принимает от клиента DHCP- запросы, передает эти запросы серверу от имени клиента (оставляя в запросе опции с требуемыми клиентом параметрами и, в зависимости от конфигурации, добавляя свои опции). Получив ответ от сервера, коммутатор передает его клиенту.

Пример настройки:

vlan database

vlan 150,200

vlan routing 150 1

vlan routing 200 2

exit

configure

ip routing

ip helper enable

ip helper-address 192.168.1.5 dhcp

interface 1/0/1

no shutdown

switchport mode access

switchport access vlan 150

exit

interface 1/0/2

no shutdown

switchport mode access

switchport access vlan 200

exit

interface vlan 200

no shutdown

routing

ip address 192.168.1.1 255.255.255.0

exit

interface vlan 150

no shutdown

routing

ip address 192.168.2.1 255.255.255.0

exit

Источник:
docs.eltex-co.ru

[MES] Конфигурация MSTP
Протокол Multiple STP (MSTP) является наиболее современной реализацией STP, поддерживающей использование VLAN. MSTP предполагает конфигурацию необходимого количества экземпляров связующего дерева (spanning tree) вне зависимости от числа групп VLAN на коммутаторе. Каждый экземпляр (instance) может содержать несколько групп VLAN. Недостатком протокола MSTP является то, что на всех коммутаторах, взаимодействующих по MSTP, должны быть одинаково сконфигурированы группы VLAN.

римечание: Всего можно сконфигурировать 64 экземпляра MSTP.


Пример настройки MSTP:


spanning-tree mode mst
!
spanning-tree mst configuration
instance 1 vlan 201,301
instance 2 vlan 99
instance 3 vlan 203,303
name test
exit

Примечание: По умолчанию все vlan'ы находятся в 0 instance.

Источник:
docs.eltex-co.ru

[MES] Конфигурация и описание работы стека
Для стека определены порты 40G. Максимальное количество юнитов в стеке = 8. Мастером может быть любой юнит с 1 по 8.

Для стека определены порты 40G. Максимальное количество юнитов в стеке = 8. Мастером может быть любой юнит с 1 по 8.

При отказе мастера его роль на себя берет коммутатор, c самым высоким по значению приоритетом. Мастерство сохраняется за перехватившим его юнитом, даже если предыдущий мастер вернулся в стек. После перезагрузки стека коммутаторов мастером станет юнит с наибольшим значением priority.

Приоритет выставляется командой:

console(Config)# switch <unit> priority <0-15>

На бэкап коммутаторе резервируется конфигурация.

Для принудительной смены мастерства используется команда:

console(Config-stack)# movemanagement <old_unit> <new_unit>

После выполнения команды происходит перенастройка конфигурацией с нового мастера. После завершения рестарта все управление стеком должно происходить через новый мастер-юнит. Чтобы сохранить текущую конфигурацию при перенастройке конфигурации стека, выполните команду write memory confirm (в привилегированном режиме) прежде, чем выполнить смену мастера. При смене мастера все L3-маршруты и записи в MAC-таблице удаляются.

По умолчанию включен режим NSF. Безостановочная пересылка (Nonstop Forwarding, NSF) позволяет уровню пересылки всех юнитов стека поддерживать передачу данных даже при сбоях на уровнях контроля и управления из-за отключения питания, отказа аппаратного или программного обеспечения юнита. Входящие и исходящие потоки трафика, передаваемые через физические порты подчинённых юнитов, будут восстановлены менее чем через секунду после сбоя на главном юните.

Каждый коммутатор использует свои tcam правила (правила acl, sqinq).

Нагрузка идет только на процессор мастера.

Передача данных между юнитами ограничивается пропускной способностью стековых портов.

Внутри юнита - пропускной способностью портов коммутатора.

 

Пример конфигурации:

1. Настройка стековых портов.
На всех юнитах из портов XLG1-XLG4 необходимо выделить по 2 порта для стека.
Для этого используются следующие команды:
console# config
console(Config)# stack
console(Config-stack)# stack-port unit/slot/port stack

Например, в качестве стековых портов выбраны 1/0/49, 1/0/50:
console# config
console(Config)# stack
console(Config-stack)# stack-port 1/0/49 stack
console(Config-stack)# stack-port 1/0/50 stack

Для применения настроек необходима перезагрузка по команде reload.

2. Назначение номера юнита (по умолчанию назначен Unit1).

Для назначения номера юнита используется следующая команда:

console(Config)# switch unit_old renumber unit_new

, где
unit_old - текущий номер юнита,
unit_new - новый номер юнита.

Например, номер юнита 1 изменить на номер 2:
console(Config)# switch 1 renumber 2

3. Сохранить конфигурацию командой write memory

4. Для применения нового номера юнита требуется перезагрузка коммутатора (команда reload).

Источник:
docs.eltex-co.ru

[MES] Маркировка трафика меткой COS/DSCP при помощи Policy на MES1400 MES2400
Создаем IP ACL, указываем трафик, над которым будут производиться действия

console(config)# ip access-list extended 1001
console(config-ext-nacl)# permit ip any any

Создаем Class-map, привязываем к нему ACL, устанавливаем COS=5

console(config)# class-map 1001
console(config-cls-map)# match access-group ip 1001
console(config-cls-map)# set class 1001 regen-priority 5 group-name qos1

Создаем Policy-map, привязываем к нему ACL, устанавливаем DSCP=46

console(config)# policy-map 1001
console(config-ply-map)# set policy class 1001 default-priority-type ipDscp 46

Настраиваем пользовательский интерфейс, привязываем Class-map.

console(config)# interface fastethernet 0/1
console(config-if)#  ip access-group 1001 in

Настраиваем uplink, разрешаем перемаркировку COS

console(config)# interface fastethernet 0/2
console(config-if)#  qos map regen-priority-type vlanPri enable

Источник:
docs.eltex-co.ru

[MES] Матрица стекирования для MES1024 MES1124 MES2124 MES3100
  1124M 1124MB 2124M 2124MB 2124F 2124P

2124P rev.B

2124P rev.C 3108F 3116F 3124F 3124
1124M +                      
1124MB + +                    
2124M - - +                  
2124MB - - + +                
2124F - - - - +              
2124P - - - - - +            
2124P rev.B - - - - - - +          
2124P rev.C - - - - - - - +        
3108F - - - - - - - - +      
3116F - - - - - - - - + +    
3124F - - - - - - - - + + +  
3124 - - - - - - - - + + + +

Источник:
docs.eltex-co.ru

[MES] Матрица стекирования для MES2300 MES3300 MES5324
  2208P 2308R 2308 2324 2324B 2324FB 2348B 2324F DC 2324P 2308P 2348P 3324 3324F 3308F 3316F 3348 3348F 5324 3508P 3508 3510P
2208P - - - - - - - - - - - - - - - - - - - - -
2308R - + - - - - - - - - - - - - - - - - - - -
2308 - - + - - - - - - - - - - - - - - - - - -
2324 - - - + + + - + - - - - - - - - - - - - -
2324B - - - + + + - + - - - - - - - - - - - - -
2324FB - - - + + + - + - - - - - - - - - - - - -
2348B - - - - - - + - - - - - - - - - - - - - -
2324F DC - - - + + + - + - - - - - - - - - - - - -
2324P - - - - - - - - + - + - - - - - - - - - -
2308P - - - - - - - - - + - - - - - - - - - - -
2348P - - - - - - - - + - + - - - - - - - - - -
3324 - - - - - - - - - - - + + + + - - - - - -
3324F - - - - - - - - - - - + + + + - - - - - -
3308F - - - - - - - - - - - + + + + - - - - - -
3316F - - - - - - - - - - - + + + + - - - - - -
3348 - - - - - - - - - - - - - - - + + - - - -
3348F - - - - - - - - - - - - - - - + + - - - -
5324 - - - - - - - - - - - - - - - - - + - - -
3508P - - - - - - - - - - - - - - - - - - - - -
3508 - - - - - - - - - - - - - - - - - - - - -
3510P - - - - - - - - - - - - - - - - - - - - -

 

Источник:
docs.eltex-co.ru

[MES] Методика восстановления логина/пароля MES5448 MES7048

Требуется консольное подключение.  Перезагрузить коммутатор, дождаться вывода строки:

Autoboot in 5 seconds

Нажать q.  Ввести 2 команды:

=> setenv boot_mode 4
=> bootstk

Дождаться загрузки коммутатора. При выводе строки:

User Name:

Нажать Enter без ввода пользователя.

console#

Источник:
docs.eltex-co.ru

[MES] Методика восстановления прошивки коммутаторов серий 23xx, 33xx и 53xx через boot меню.
Методика восстановления прошивки коммутаторов серий 23xx, 33xx и 53xx через boot меню.

Для восстановления коммутатора понадобится ПК с TFTP-сервером и доступ к коммутатору через консольный порт. Процесс восстановления сбросит устройство к заводским настройкам.

 

Процесс восстановления:

1) Подключаем консольный кабель и открываем терминальную программу, например, PUTTY.  Соединяем сетевую карту ПК с портом OOB коммутатора. Перезагружаем коммутатор по питанию;

2) В момент загрузки при появлении в выводе терминала  "Press x to choose XMODEM..." в течение трех секунд необходимо нажать ctrl+shift+6, чтобы включить режим с выводом трассировок

3) Далее в выводе трассировок появится строка "Autoboot in 5 seconds...",  на этом месте требуется ввести пароль - eltex. После чего появится приглашение командной строки U-Boot'а.

4) В консоли U-Boot'а выставить следующие переменные:

                 set ipaddr 10.10.10.2                                                      #IP-адрес устройства, необходимо заменить на актуальный для рабочего места.

                 set serverip 10.10.10.1                                                   #IP-адрес TFTP сервера, где находится файл образа ПО.

                 set rol_image_name mes3300-401.ros                      #Заменить название на актуальное для текущей версии ПО и модели коммутатора.

set bootcmd 'run bootcmd_tftp'

nand erase.chip

ubi part rootfs; ubi create rootfs

boot

Для коммутаторов MES23xx необходимо инициализировать сетевые интерфейсы командами :

                switch init

               set ethact sdma

После ввода команды boot коммутатор начнет загрузку образа ПО с TFTP-сервера и последующий его запуск

Источник:
docs.eltex-co.ru

[MES] Мониторинг АКБ и основного источника по SNMP в коммутаторах MES1124MB, MES2124MB, MES2324B, MES2324FB, MES2348B
Состояние работы основного источника питания и аккумуляторной батареи можно посмотреть следующими snmp-командами:

Для основного источника питания: snmpwalk -v2c -c <community> <ip-address> 1.3.6.1.4.1.89.53.15.1.2
Для аккумуляторной батареи: snmpwalk -v2c -c <community> <ip-address> 1.3.6.1.4.1.89.53.15.1.3
Для основного источника питания в коммутаторах возможны следующие варианты:
normal (1) - сеть 220В подключена;
notFunctioning (6) - сеть 220В не подключена.

Для резервного блока питания (АКБ) в коммутаторах возможны следующие варианты:
normal (1) - АКБ заряжена;
warning (2) - АКБ разряжается;
critical (3) - АКБ разряжается, низкий уровень заряда;
notPresent (5) - АКБ отключена;
notFunctioning (6) - авария расцепителя;
restore (7) - АКБ заряжается.

Источник:
docs.eltex-co.ru

[MES] Мониторинг и управление Ethernet-коммутаторами MES по SNMP

1 НАСТРОЙКА SNMP-СЕРВЕРА И ОТПРАВКИ SNMP-TRAP

snmp-server server

snmp-server community public ro

snmp-server community private rw

snmp-server host 192.168.1.1 traps version 2c private

2 КРАТКИЕ ОБОЗНАЧЕНИЯ

  • ifIndex - индекс порта;

Может принимать следующие значения:

1.      Коммутаторы доступа

Модель коммутатора Индексы 
MES2308
MES2308R
MES2308P

MES2324
MES2324B
MES2324F
MES2324FB
MES2348
MES2348B
MES2324P

MES2348P
- индексы 49-96 — gigabitethernet 1/0/1-48;

- индексы 157-204 — gigabitethernet 2/0/1-48;

- индексы 256-303 — gigabitethernet 3/0/1-48;

- индексы 373-420 — gigabitethernet 4/0/1-48;

- индексы 481-528 — gigabitethernet 5/0/1-48;

- индексы 589-636 — gigabitethernet 6/0/1-48;

- индексы 697-744 — gigabitethernet 7/0/1-48;

- индексы 805-852 — gigabitethernet 8/0/1-48;

- индексы 105-108 — tengigabitethernet 1/0/1-4;

- индексы 213-216 — tengigabitethernet 2/0/1-4;

- индексы 321-324 — tengigabitethernet 3/0/1-4;

- индексы 429-432 — tengigabitethernet 4/0/1-4;

- индексы 537-540 — tengigabitethernet 5/0/1-4;

- индексы 645-648 — tengigabitethernet 6/0/1-4;

- индексы 753-756 — tengigabitethernet 7/0/1-4;

- индексы 861-864 — tengigabitethernet 8/0/1-4;

- индексы 1000-1047 — Port-Channel 1/0/1-48;

- индексы 100000-104095 — VLAN 1-4096. 

2.     Коммутаторы агрегации

Модель коммутатора Индексы 
MES3324
MES3324F
MES3308F
MES3316F
MES3348
MES3348F

- индексы 49-96 — gigabitethernet 1/0/1-48;

- индексы 157-204 — gigabitethernet 2/0/1-48;

- индексы 256-303 — gigabitethernet 3/0/1-48;

- индексы 373-420 — gigabitethernet 4/0/1-48;

- индексы 481-528 — gigabitethernet 5/0/1-48;

- индексы 589-636 — gigabitethernet 6/0/1-48;

- индексы 697-744 — gigabitethernet 7/0/1-48;

- индексы 805-852 — gigabitethernet 8/0/1-48;

- индексы 105-108 — tengigabitethernet 1/0/1-4;

- индексы 105-108 — tengigabitethernet 1/0/1-4;

- индексы 213-216 — tengigabitethernet 2/0/1-4;

- индексы 321-324 — tengigabitethernet 3/0/1-4;

- индексы 429-432 — tengigabitethernet 4/0/1-4;

- индексы 537-540 — tengigabitethernet 5/0/1-4;

- индексы 645-648 — tengigabitethernet 6/0/1-4;

- индексы 753-756 — tengigabitethernet 7/0/1-4;

- индексы 861-864 — tengigabitethernet 8/0/1-4;

- индексы 1000-1047 — Port-Channel 1/0/1-48;

- индексы 100000-104095 — VLAN 1-4096.

3.     Индустриальные коммутаторы 

Модель коммутатора  Индексы
MES2328I
MES3508
MES3508P
MES3510P
-индексы 49-76 - gigabitethernet 1/0/1-28;

-индексы 157-184 - gigabitethernet 2/0/1-28;

-индексы 256-283 - gigabitethernet 3/0/1-28;

-индексы 373-400 - gigabitethernet 4/0/1-28;

-индексы 481-508 - gigabitethernet 5/0/1-28;

-индексы 589-616 - gigabitethernet 6/0/1-28;

-индексы 697-724 - gigabitethernet 7/0/1-28;

-индексы 805-832 - gigabitethernet 8/0/1-28;

- индексы 1000-1047 — Port-Channel 1/0/1-48;

- индексы 100000-104095 — VLAN 1-4096. 

4.     Коммутаторы для ЦОД

Модель коммутатора Индексы
MES5324

- индексы 1-24 — tengigabitethernet 1/0/1-24;

- индексы 53-76 — tengigabitethernet 2/0/1-24;

- индексы 105-128 — tengigabitethernet 3/0/1-24;

- индексы 157-180 — tengigabitethernet 4/0/1-24;

- индексы 209-232 — tengigabitethernet 5/0/1-24;

- индексы 261-284 — tengigabitethernet 6/0/1-24;

- индексы 313-336 — tengigabitethernet 7/0/1-24;

- индексы 365-388 — tengigabitethernet 8/0/1-24;

- индексы 25-28 — fortygigabitethernet1/0/1-4;

- индексы 77-80 — fortygigabitethernet2/0/1-4;

- индексы 129-132 — fortygigabitethernet3/0/1-4;

- индексы 181-184 — fortygigabitethernet4/0/1-4;

- индексы 233-236 — fortygigabitethernet5/0/1-4;

- индексы 285-288 — fortygigabitethernet6/0/1-4;

- индексы 337-340 — fortygigabitethernet7/0/1-4;

- индексы 389-392 — fortygigabitethernet8/0/1-4;

- индексы 1000-1047 — Port-Channel 1/0/1-48;

- индексы 100000-104095 — VLAN 1-4096. 

· index-of-rule — индекс правила в ACL. Всегда кратен 20! Если при создании правил будут указаны индексы не кратные 20, то после перезагрузки коммутатора порядковые номера правил в ACL станут кратны 20;

· Значение поля N — в IP и MAC ACL любое правило занимает от одного до 3 полей в зависимости от его структуры;

· IP address — IP-адрес для управления коммутатором; В приведенных в документе примерах используется следующий IP-адрес для управления:
192.168.1.30;

· ip address of tftp server — IP-адрес TFTP-сервера; В приведенных в документе примерах используется следующий IP-адрес TFTP-сервера:
192.168.1.1;

· community — строка сообщества (пароль) для доступа по протоколу SNMP.

В приведенных в документе примерах используются следующие community:

private — права на запись (rw);
public — права на чтение (ro).

3 РАБОТА С ФАЙЛАМИ

3.1 Сохранение конфигурации

Сохранение конфигурации в энергонезависимую память

MIB: rlcopy.mib

Используемые таблицы: rlCopyEntry — 1.3.6.1.4.1.89.87.2.1

snmpset -v2c -c <community> <IP address> \
 1.3.6.1.4.1.89.87.2.1.3.1 I {local(1)} \
 1.3.6.1.4.1.89.87.2.1.7.1 i {runningConfig(2)} \
 1.3.6.1.4.1.89.87.2.1.8.1 i {local(1)} \
 1.3.6.1.4.1.89.87.2.1.12.1 i {startupConfig (3)} \
 1.3.6.1.4.1.89.87.2.1.17.1 i {createAndGo (4)}

Пример сохранения в энергонезависимую память

Команда CLI:
copy running-config startup-config 

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \ 
1.3.6.1.4.1.89.87.2.1.3.1 i 1 \ 
1.3.6.1.4.1.89.87.2.1.3.1 i 1 \ 
1.3.6.1.4.1.89.87.2.1.8.1 i 1 \ 
1.3.6.1.4.1.89.87.2.1.12.1 i 3 \
1.3.6.1.4.1.89.87.2.1.17.1 i 4

Сохранение конфигурации в энергозависимую память из энергонезависимой

MIB: rlcopy.mib

Используемые таблицы: rlCopyEntry — 1.3.6.1.4.1.89.87.2.1 

snmpset -v2c -c <community> <IP address> \
 1.3.6.1.4.1.89.87.2.1.3.1 i {local(1)} \
 1.3.6.1.4.1.89.87.2.1.7.1 i {startupConfig (3)} \ 
 1.3.6.1.4.1.89.87.2.1.8.1 i {local(1)} \ 
 1.3.6.1.4.1.89.87.2.1.12.1 i {runningConfig(2)} \ 
 1.3.6.1.4.1.89.87.2.1.17.1 i {createAndGo (4)} 

Пример сохранения в энергозависимую память 

Команда CLI:
copy startup-config running-config 

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.87.2.1.3.1 i 1 \ 
1.3.6.1.4.1.89.87.2.1.7.1 i 3 \
1.3.6.1.4.1.89.87.2.1.8.1 i 1 \ 
1.3.6.1.4.1.89.87.2.1.12.1 i 2 \ 
1.3.6.1.4.1.89.87.2.1.17.1 i 4

Удаление конфигурации из энергонезависимой памяти

MIB: rlmng.mib

Используемые таблицы: rndAction — 1.3.6.1.4.1.89.1.2

snmpset -v2c -c <community> <IP address> \
 1.3.6.1.4.1.89.1.2.0 i {eraseStartupCDB (20)} 

Пример удаления startup-config

Команда CLI:
delete startup-config 

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.1.2.0 i 20

3.2 Работа с TFTP-сервером

Копирование конфигурации из энергозависимой памяти на TFTP-сервер

MIB: rlcopy.mib

Используемые таблицы: rlCopyEntry — 1.3.6.1.4.1.89.87.2.1

snmpset -v2c -c <community> -t 5 -r 3 <IP address> \
 1.3.6.1.4.1.89.87.2.1.3.1 i {local(1)} \
 1.3.6.1.4.1.89.87.2.1.7.1 i {runningConfig(2)} \
 1.3.6.1.4.1.89.87.2.1.8.1 i {tftp(3)} \
 1.3.6.1.4.1.89.87.2.1.9.1 a {ip address of tftp server} \ 
 1.3.6.1.4.1.89.87.2.1.11.1 s "MES-config.cfg" \ 
 1.3.6.1.4.1.89.87.2.1.17.1 i {createAndGo (4)}

Пример копирования из running-config на TFTP-сервер

Команда CLI:
copy running-config tftp://192.168.1.1/MES-config.cfg


Команда SNMP:
snmpset -v2c -c private -t 5 -r 3 192.168.1.30 \ 
1.3.6.1.4.1.89.87.2.1.3.1 i 1 \
1.3.6.1.4.1.89.87.2.1.7.1 i 2 \
1.3.6.1.4.1.89.87.2.1.8.1 i 3 \
1.3.6.1.4.1.89.87.2.1.9.1 a 192.168.1.1 \ 
1.3.6.1.4.1.89.87.2.1.11.1 s "MES-config.cfg" \
1.3.6.1.4.1.89.87.2.1.17.1 i 4

Копирование конфигурации в энергозависимую память с TFTP-сервера

MIB: rlcopy.mib 

Используемые таблицы: rlCopyEntry — 1.3.6.1.4.1.89.87.2.1

snmpset -v2c -c <community> -t 5 -r 3 <IP address> \
 1.3.6.1.4.1.89.87.2.1.3.1 i {tftp(3)} \
 1.3.6.1.4.1.89.87.2.1.4.1 a {ip address of tftp server} \ 
 1.3.6.1.4.1.89.87.2.1.6.1 s "MES-config.cfg" \
 1.3.6.1.4.1.89.87.2.1.8.1 i {local(1)} \
 1.3.6.1.4.1.89.87.2.1.12.1 i {runningConfig(2)} \
 1.3.6.1.4.1.89.87.2.1.17.1 i {createAndGo (4)} 

Пример копирования с TFTP-сервера в running-config

Команда CLI:
copy tftp://192.168.1.1/MES-config.cfg running-config

Команда SNMP:
snmpset -v2c -c private -t 5 -r 3 192.168.1.30 \
1.3.6.1.4.1.89.87.2.1.3.1 i 3 \
1.3.6.1.4.1.89.87.2.1.4.1 a 192.168.1.1 \
1.3.6.1.4.1.89.87.2.1.6.1 s "MES-config.cfg" \
1.3.6.1.4.1.89.87.2.1.8.1 i 1 \
1.3.6.1.4.1.89.87.2.1.12.1 i 2 \
1.3.6.1.4.1.89.87.2.1.17.1 i 4 

Копирование конфигурации из энергонезависимой памяти на TFTP-сервер

MIB: rlcopy.mib 

Используемые таблицы: rlCopyEntry — 1.3.6.1.4.1.89.87.2.1 

snmpset -v2c -c <community> -t 5 -r 3 <IP address> \
 1.3.6.1.4.1.89.87.2.1.3.1 i {local(1)} \ 
 1.3.6.1.4.1.89.87.2.1.7.1 i {startupConfig (3)} \
 1.3.6.1.4.1.89.87.2.1.8.1 i {tftp(3)} \
 1.3.6.1.4.1.89.87.2.1.9.1 a {ip address of tftp server} \
 1.3.6.1.4.1.89.87.2.1.11.1 s "MES-config.cfg" \
 1.3.6.1.4.1.89.87.2.1.17.1 i {createAndGo (4)}

Пример копирования из startup-config на TFTP-сервер

Команда CLI:
copy startup-config tftp://192.168.1.1/MES-config.cfg 

Команда SNMP:
snmpset -v2c -c private -t 5 -r 3 192.168.1.30 \ 
1.3.6.1.4.1.89.87.2.1.3.1 i 1 \ 
1.3.6.1.4.1.89.87.2.1.7.1 i 3 \
1.3.6.1.4.1.89.87.2.1.8.1 i 3 \
1.3.6.1.4.1.89.87.2.1.9.1 a 192.168.1.1 \
1.3.6.1.4.1.89.87.2.1.11.1 s "MES-config.cfg" \ 
1.3.6.1.4.1.89.87.2.1.17.1 i 4

Копирование конфигурации в энергонезависимую память с TFTP-сервера

MIB: rlcopy.mib

Используемые таблицы: rlCopyEntry — 1.3.6.1.4.1.89.87.2.1

snmpset -v2c -c <community> -t 5 -r 3 <IP address> \
1.3.6.1.4.1.89.87.2.1.3.1 i {tftp(3)} \
1.3.6.1.4.1.89.87.2.1.4.1 a {ip address of tftp server} \
1.3.6.1.4.1.89.87.2.1.6.1 s "MES-config.cfg" \
1.3.6.1.4.1.89.87.2.1.8.1 i {local(1)} \
1.3.6.1.4.1.89.87.2.1.12.1 i {startupConfig (3)} \ 
1.3.6.1.4.1.89.87.2.1.17.1 i {createAndGo (4)}

Пример копирования startup-config c TFTP-серверa

Команда CLI:
boot config tftp://192.168.1.1/MES-config.cfg

Команда SNMP:
snmpset -v2c -c private -t 5 -r 3 192.168.1.30 \
1.3.6.1.4.1.89.87.2.1.3.1 i 3 \
1.3.6.1.4.1.89.87.2.1.4.1 a 192.168.1.1 \
1.3.6.1.4.1.89.87.2.1.6.1 s "MES-config.cfg" \
1.3.6.1.4.1.89.87.2.1.8.1 i 1 \
1.3.6.1.4.1.89.87.2.1.12.1 i 3 \ 
1.3.6.1.4.1.89.87.2.1.17.1 i 4

3.3 Автоконфигурирование коммутатора

Включение автоматического конфигурирования, базирующегося на DHCP (включено по 
умолчанию)

MIB: radlan-dhcpcl-mib.mib 

Используемые таблицы: rlDhcpClOption67Enable — 1.3.6.1.4.1.89.76.9

snmpset -v2c -c <community> <IP address> \
 1.3.6.1.4.1.89.76.9.0 i {enable(1), disable(2)}

Пример включения автоконфигурирования, базирующегося на DHCP

Команда CLI:
boot host auto-config

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \ 
1.3.6.1.4.1.89.76.9.0 i 1

3.4 Обновление программного обеспечения

Обновление программного обеспечения коммутатора

Проходит в два этапа:

1. Загрузка образа ПО

MIB: rlcopy.mib 

Используемые таблицы: rlCopyEntry — 1.3.6.1.4.1.89.87.2.1

snmpset -v2c -c <community> <IP address> \
 1.3.6.1.4.1.89.87.2.1.3.1 i {tftp (3)} \
 1.3.6.1.4.1.89.87.2.1.4.1 a {ip add of tftp server} \
 1.3.6.1.4.1.89.87.2.1.6.1 s "image name" \
 1.3.6.1.4.1.89.87.2.1.8.1 i {local(1)} \
 1.3.6.1.4.1.89.87.2.1.12.1 i {image(8)} \ 
 1.3.6.1.4.1.89.87.2.1.17.1 i {createAndGo(4)} 

Пример загрузки образа ПО

Команда CLI:
boot system tftp://192.168.1.1/mes3300-409-R478.ros

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.87.2.1.3.1 i 3 \ 
1.3.6.1.4.1.89.87.2.1.4.1 a 192.168.1.1 \ 
1.3.6.1.4.1.89.87.2.1.6.1 s "mes3300-409-R478.ros" \
1.3.6.1.4.1.89.87.2.1.8.1 i 1 1.3.6.1.4.1.89.87.2.1.12.1 i 8 \
1.3.6.1.4.1.89.87.2.1.17.1 i 4 

2. Смена активного образа коммутатора

MIB: radlan-deviceparams-mib.mib

Используемые таблицы: rndActiveSoftwareFileAfterReset — 1.3.6.1.4.1.89.2.13.1.1.3

snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.2.13.1.1.3.1 i {image1 (1), image2 (2)} 

Пример смены активного образа коммутатора

Команда CLI:
boot system inactive-image

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.2.13.1.1.3.1 i 1

После загрузки ПО с TFTP-сервера данная команда применяется автоматически.

Перезагрузка коммутатора

MIB: rlmng.mib

Используемые таблицы: rlRebootDelay — 1.3.6.1.4.1.89.1.10

snmpset -v2c -c <community> <IP address> \
 1.3.6.1.4.1.89.1.10.0 t {задержка времени перед перезагрузкой}

Пример перезагрузки, отложенной на 8 минут

Команда CLI:
reload in 8

Команда SNMP:
snmpset -v2c -c private -r 0 192.168.1.30 \
1.3.6.1.4.1.89.1.10.0 t 48000

Для моментальной перезагрузки требуется указать значение t=0.

Просмотр образа ПО

MIB: radlan-deviceparams-mib.mib

Используемые таблицы: rndActiveSoftwareFile — 1.3.6.1.4.1.89.2.13.1.1.2

snmpwalk -v2c -c <community> <IP address> \
 1.3.6.1.4.1.89.2.13.1.1.2

Пример просмотра образа ПО

Команда CLI:
show bootvar 

Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.2.13.1.1.2 

Возможные варианты:


image1(1)
image2(2)

rndActiveSoftwareFileAfterReset — 1.3.6.1.4.1.89.2.13.1.1.3 — здесь можно посмотреть активный образ после перезагрузки ПО.

Просмотр загруженных образов ПО

MIB: radlan-deviceparams-mib.mib 

Используемые таблицы: rndImageInfoTable — 1.3.6.1.4.1.89.2.16.1 

snmpwalk -v2c -c <community> <IP address> \
 1.3.6.1.4.1.89.2.16.1

Пример просмотра загруженных образов ПО

Команда CLI:
show bootvar

Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.2.16.1

Просмотр текущей версии ПО коммутатора

MIB: radlan-deviceparams-mib.mib 

Используемые таблицы: rndBrgVersion — 1.3.6.1.4.1.89.2.4

snmpwalk -v2c -c <community> <IP address> \
 1.3.6.1.4.1.89.2.4

Пример просмотра текущей версии ПО коммутатора

Команда CLI:
show version

Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.2.4

Просмотр текущей версии аппаратного обеспечения (HW)

MIB: radlan-deviceparams-mib.mib

Используемые таблицы: genGroupHWVersion — 1.3.6.1.4.1.89.2.11.1 

snmpwalk -v2c -c <community >  <IP address > \
 1.3.6.1.4.1.89.2.11.1

Пример просмотра текущей версии аппаратного обеспечения

Команда CLI:
show system id

Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.2.11.1

 

4 УПРАВЛЕНИЕ СИСТЕМОЙ

4.1 Системные ресурсы

Просмотр серийного номера коммутатора

MIB: rlphysdescription.mib

Используемые таблицы: rlPhdUnitGenParamSerialNum — 1.3.6.1.4.1.89.53.14.1.5

snmpwalk -v2c -c <community> <IP address> \
 1.3.6.1.4.1.89.53.14.1.5

Пример просмотра серийного порта коммутатора

Команда CLI:
show system id

Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.53.14.1.5

Просмотр информации о загрузке tcam

MIB: RADLAN-QOS-CLI-MIB

Используемые таблицы: rlQosClassifierUtilizationPercent — 1.3.6.1.4.1.89.88.36.1.1.2

snmpwalk -v2c -c <community>  <IP address> \
 1.3.6.1.4.1.89.88.36.1.1.2

Пример просмотра информации о загрузке tcam

Команда CLI:
show system tcam utilization

Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.88.36.1.1.2 

Просмотр максимального количества хостов

MIB: rltuning.mib

Используемые таблицы: rsMaxIpSFftEntries — 1.3.6.1.4.1.89.29.8.9.1

snmpwalk -v2c -c <community> <IP address> \
 1.3.6.1.4.1.89.29.8.9.1 

Пример просмотра максимального количества хостов

Команда CLI:
show system router resources

Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.29.8.9.1

Просмотр используемого количества хостов

MIB: rlfft.mib

Используемые таблицы: rlSysmngTcamAllocInUseEntries — 1.3.6.1.4.1.89.204.1.1.1.5

snmpwalk -v2c -c <community> <IP address> \
 1.3.6.1.4.1.89.204.1.1.1.5.5.116.99.97.109.49.1

Пример просмотра используемого количества хостов 

Команда CLI:
show system router resources 

Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.204.1.1.1.5.5.116.99.97.109.49.1 

Просмотр максимального количества маршрутов

MIB: rltuning.mib

Используемые таблицы: rsMaxIpPrefixes — 1.3.6.1.4.1.89.29.8.21.1

snmpwalk -v2c -c <community> <IP address> \
 1.3.6.1.4.1.89.29.8.21.1

Пример просмотра максимального количества маршрутов 

Команда CLI:
show system router resources 

Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.29.8.21.1

Просмотр используемого количества маршрутов

MIB: rlip.mib 

Используемые таблицы: rlIpTotalPrefixesNumber — 1.3.6.1.4.1.89.26.25

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.26.25 

Пример просмотра используемого количества маршрутов

Команда CLI:
show system router resources 

Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.26.25

Просмотр максимального количества IP-интерфейсов

MIB: rltuning.mib

Используемые таблицы: rsMaxIpInterfaces — 1.3.6.1.4.1.89.29.8.25.1

snmpwalk -v2c -c <community> <IP address> \
 1.3.6.1.4.1.89.29.8.25.1 

Пример просмотра максимального количества IP-интерфейсов

Команда CLI:
show system router resources 

Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.29.8.25.1

Просмотр используемого количества IP-интерфейсов

MIB: rlip.mib

Используемые таблицы: rlIpAddressesNumber — 1.3.6.1.4.1.89.26.23

snmpwalk -v2c -c <community> <IP address> \
 1.3.6.1.4.1.89.26.23 

Пример просмотра используемого количества IP-интерфейсов

Команда CLI:
show system router resources

Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.26.23

Просмотр системного MAC-адреса коммутатора

MIB: rlphysdescription.mib

Используемые таблицы: rlPhdStackMacAddr — 1.3.6.1.4.1.89.53.4.1.7

snmpwalk -v2c -c <community>  <IP address> \
 1.3.6.1.4.1.89.53.4.1.7

Пример просмотра системного MAC-адреса коммутатора 

Команда CLI:
show system

Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.53.4.1.7

Просмотр Uptime коммутатора

MIB: SNMPv2-MIB

Используемые таблицы: sysUpTime — 1.3.6.1.2.1.1.3

snmpwalk -v2c -c <community> <IP address> \
 1.3.6.1.2.1.1.3

Пример просмотра Uptime коммутатора

Команда CLI:
show system

Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.1.3

Просмотр Uptime порта

MIB: SNMPv2-MIB, IF-MIB

Используемые таблицы: 
sysUpTime — 1.3.6.1.2.1.1.3
ifLastChange — 1.3.6.1.2.1.2.2.1.9

snmpwalk -v2c -c <community > <IP address > \
 1.3.6.1.2.1.1.3
snmpwalk -v2c -c <community > <IP address > \
1.3.6.1.2.1.2.2.1.9.{ifindex}

Пример просмотра Uptime порта Gigabitethernet1/0/2

Команда CLI:
show interface status Gigabitethernet1/0/2

Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.1.3
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.2.2.1.9.50

Из вывода первой команды необходимо отнять вывод второй команды. Полученное 
значение и будет являться Uptime порта.

Включение сервиса мониторинга приходящего на CPU трафика

MIB: rlsct.mib

Используемые таблицы: rlSctCpuRateEnabled — 1.3.6.1.4.1.89.203.1 

Подробнее: Коммутаторы Ethernet MES23xx, MES33xx, MES35xx, MES53xx. Мониторинг и управление Ethernet-коммутаторами MES по SNMP

[MES] Мониторинг параметров окружения на MES1400/2400
Для мониторинга параметров окружения коммутатора, таких как состояние вентиляторов, температурные значения термодатчика, утилизация CPU и др. используется команда:

Для мониторинга параметров окружения коммутатора, таких как состояние вентиляторов, температурные значения термодатчика, утилизация CPU и др. используется команда:

Пример для MES2408C AC:

console# show env all

RAM Threshold : 100%
Current RAM Usage : 75%
CPU utilization : Enabled
CPU Threshold : 100%
CPU Usage for 5 sec : 4%
CPU Usage for 1 min : 2%
CPU Usage for 5 min : 2%
Min power supply : 100v
Max power supply : 230v
Current power supply : 230v
Max Temperature : 80C
Min Temperature : -30C
Current Temperature : 32C
Flash Threshold : 100%
Current Flash Usage : 68%
Mgmt Port Routing : Disabled
Reset-button mode : Enabled
CPU tasks utilization : Enabled

Task name 5 seconds 1 minute 5 minutes
--------- --------- -------- ---------
TMR#         0%        0%        0%
PKTT         0%        0%        0%
VcmT         0%        0%        0%
SMT          0%        0%        0%
CFA          0%        0%        0%
IPDB         0%        0%        0%
L2DS         0%        0%        0%
BOXF         0%        0%        0%
ERRD         0%        0%        0%
ELMT         0%        0%        0%
EOAT         0%        0%        0%
FMGT         0%        0%        0%
AstT         0%        0%        0%
PIf          0%        0%        0%
LaTT         0%        0%        0%
CMNT         0%        0%        0%
VLAN         0%        0%        0%
GARP         0%        0%        0%
FDBP         0%        0%        0%
SnpT         0%        0%        0%
QOS          0%        0%        0%
SMGT         0%        0%        0%
CPUU         0%        0%        0%
BAKP         0%        0%        0%
RT6          0%        0%        0%
IP6          0%        0%        0%
PNG6         0%        0%        0%
RTM          0%        0%        0%
IPFW         0%        0%        0%
UDP          0%        0%        0%
ARP          0%        0%        0%
PNG          0%        0%        0%
SLT          0%        0%        0%
SAT          0%        0%        0%
TCP          0%        0%        0%
RAD          0%        0%        0%
TACT         0%        0%        0%
DHRL         0%        0%        0%
DHC          0%        0%        0%
DCS          0%        0%        0%
PIA          0%        0%        0%
L2SN         0%        0%        0%
HST          0%        0%        0%
HRT1         0%        0%        0% 
HRT2         0%        0%        0%
HRT3         0%        0%        0%
CLIC         2%        0%        0%
CTS          0%        0%        0%
SSH          0%        0%        0%
LLDP         0%        0%        0%
LBD          0%        0%        0%
LOGF         0%        0%        0%
SNT          0%        0%        0%
STOC         0%        0%        0% 
HWPK         0%        0%        0%
MSR          0%        0%        0%

Dry contacts states

Pair State
---- ---------

Dying Gasp status : Enabled

Также вывод параметров доступен блочно. Например, для мониторинга утилизации CPU можно использовать команду:

console# show env cpu

CPU utilization : Enabled

CPU Threshold : 100%

CPU Usage for 5 sec : 5%

CPU Usage for 1 min : 2%

CPU Usage for 5 min : 2%

Для мониторинга доступны следующие блоки:

console# show env CPU

console# show env RAM

console# show env dry-contacts

console# show env dying-gasp

console# show env flash

console# show env power

console# show env reset-button 

console# show env tasks

console# show env temperature

Источник:
docs.eltex-co.ru

[MES] Назначение VLAN на основе Ethertype пакета на MES5312 MES5316A MES5324A MES5332A
Данная операция выполняется с помощью функционала PROTOCOL-BASED VLAN. Рассмотрим пример добавления vlan 100 для приходящего на порт ARP трафика.

Данная операция выполняется с помощью функционала PROTOCOL-BASED VLAN.

Ниже приведен пример добавления vlan 100 для приходящего на порт ARP трафика.

 

vlan database

vlan 100

map protocol 0806 ethernet protocols-group 1

exit

!

interface TengigabitEthernet 1/0/1

 switchport mode general

 switchport general allowed vlan add 100 untagged

 switchport general map protocols-group 1 vlan 100

exit

Источник:
docs.eltex-co.ru

[MES] Настройка (Port security) максимального количества изучаемых на порту MAC адресов на MES5312, MES5316A, MES5324A, MES5332A
Для настройки максимального количества MAC адресов, которое может изучить порт, необходимо перейти в режим конфигурирования интерфейса и выполнить следующие настройки: Установить режим ограничения изучения максимального количества MAC-адресов:

Для настройки максимального количества MAC адресов, которое может изучить порт, необходимо перейти в режим конфигурирования интерфейса и выполнить следующие настройки:

  • Установить режим ограничения изучения максимального количества MAC-адресов:

console(config-if)# port security mode max-addresses

  • Задать максимальное количество адресов, которое может изучить порт, например, 1:

console(config-if)# port security max 1

  • Включить функцию защиты на интерфейсе:

console(config-if)# port security

Источник:
docs.eltex-co.ru

[MES] Настройка (RMON) протокола удаленного мониторинга на MES5312 MES5316A MES5324A MES5332A
Протокол мониторинга сети (RMON) является расширением протокола SNMP, позволяя предоставить более широкие возможности контроля сетевого трафика. Основное отличие RMON от SNMP состоит в том, что rmon-агенты могут самостоятельно осуществлять сбор и обработку данных. Информация, собранная и обработанная агентом, передается на сервер.

Протокол мониторинга сети (RMON) является расширением протокола SNMP, позволяя предоставить более широкие возможности контроля сетевого трафика. Основное отличие RMON от SNMP состоит в том, что rmon-агенты могут самостоятельно осуществлять сбор и обработку данных. Информация, собранная и обработанная агентом, передается на сервер.


1)    Первоначально необходимо настроить условие выдачи аварийного сигнала rmon alarm.

Примечаниеalarm - периодическое извлечение статистических выборок из переменных в датчике и их сравнение с заранее выбранными пороговыми значениями. Если наблюдаемые значения выходят за границы пороговых, генерируется событие.

Настроим условие: На интерфейсе gigabitethernet0/11 при превышении порога InUcastPkts (OID: 1.3.6.1.2.1.2.2.1.11) в 200 пакетов, сгенерировать событие trap.

console(config)# rmon alarm 1 1.3.6.1.2.1.2.2.1.11.59 5 200 100 1 2 owner TEST_SW

По порядку слева направо опишу значение параметров в команде:

•    1 – index аварийного события;
•    1.3.6.1.2.1.2.2.1.11.1 – OID;
•    5 - интервал, в течение которого данные отбираются и сравниваются с восходящей и нисходящей границами;
•    200 - rthreshold – восходящая граница;
•    100 - fthreshold – нисходящая граница;
•    1 - revent – индекс события, которое используется при пересечении восходящей границы;
•    2 - fevent – индекс события, которое используется при пересечении нисходящей границы;
•    Owner – имя создателя аварийного события;

2)    Далее необходимо настроить событие для случая пересечения верхней границы в системе удаленного мониторинга:


console(config)# rmon event 1 trap community test_community description "On  Gig0/11 counter inUnPackets > 200" owner TEST_SW
•    1 – индекс события;
•    Trap - тип уведомления, генерируемого устройством по этому событию;
•    community - строка сообщества SNMP для пересылки trap;
•    description - описание события;
•    Owner – имя создателя аварийного события;


3)    Также необходимо настроить события для случая пересечения нижней границы в системе удаленного мониторинга:
console(config)# rmon event 2 trap community test_community description "On  Gig0/11 counter inUnPackets < 100" owner TEST_SW


Примечание: Индексы событий  rmon event, указанные в rmon alarm (revent, fevent) должны совпадать с индексами, указанными в rmon event.

Источник:
docs.eltex-co.ru

[MES] Настройка 802.1x и MAC-авторизации через RADIUS-server на MES5448 MES7048
Аутентификация на основе стандарта 802.1х обеспечивает проверку подлинности пользователей коммутатора через внешний сервер на основе порта, к которому подключен клиент. Только аутентифицированные и авторизованные пользователи смогут передавать и принимать данные. Проверка подлинности пользователей портов выполняется сервером RADIUS посредством протокола EAP (Extensible Authentication Protocol)

Аутентификация на основе стандарта 802.1х обеспечивает проверку подлинности пользователей коммутатора через внешний сервер на основе порта, к которому подключен клиент.
Только аутентифицированные и авторизованные пользователи смогут передавать и принимать данные. Проверка подлинности пользователей портов выполняется сервером RADIUS посредством протокола EAP (Extensible Authentication Protocol)

1/0/1 -  802.1x. Неавторизированные пользователи попадают в guest vlan.

1/0/2 - MAC-авторизация

 

Настройки коммутатора SW1

vlan database
vlan 100,20
vlan routing 100 1
vlan routing 20 2
Exit
!
configure
authentication enable
dot1x system-auth-control
aaa authentication dot1x default radius
authorization network radius
dot1x dynamic-vlan enable
radius accounting mode
radius server host auth 10.3.0.1 name "server-1"
radius server key auth 10.3.0.1
test
radius server primary 10.3.0.1

interface 1/0/1
authentication order dot1x
authentication priority dot1x
dot1x timeout reauth-period 30
dot1x guest-vlan 20
no shutdown
switchport mode access
switchport access vlan 100
exit

interface 1/0/2
authentication order mab
authentication priority mab
dot1x port-control mac-based
dot1x timeout reauth-period 30
dot1x mac-auth-bypass
no shutdown
switchport mode access
switchport access vlan 100
description 'test_dot1x'
exit

interface 1/0/3
no shutdown
switchport mode trunk
Exit
!
interface vlan 100
no shutdown
ip address 10.3.0.5 255.255.255.0
exit
!
interface vlan 200
dot1x guest-vlan
exit

Источник:
docs.eltex-co.ru

[MES] Настройка ARP Inspection на MES1400 MES2400
Функция контроля протокола ARP (ARP Inspection) предназначена для защиты от атак с использованием протокола ARP (например, ARP-spoofing – перехват ARP-трафика). Контроль протокола ARP осуществляется наосновании таблицы соответствий DHCPsnooping или статических соответствий IP- и MAC-адресов, заданных для группы VLAN.

Пример настройки на основании статических соответствий IP- и MAC-адресов.

Включить контроль протокола ARP и добавить в список статическое соответствие IP- и MAC-адресов для соответствующей группы VLAN.

console(config)# ip arp inspection enable
console(config)# ip arp inspection vlan 398
console(config)# ip source binding 00:11:22:33:44:55 vlan 398 192.168.2.10 interface gigabitethernet 0/10

По умолчанию все интерфейсы «недоверенные».

Для того,  чтобы добавить интерфейс в список доверенных при использовании контроля протокола ARP, необходимо для интерфейса выполнить команду:

console(config-if)# port-security-state trusted
console(config-if)# set port-role uplink

Пример настройки на основании таблицы соответствий DHCP snooping

Включить контроль протокола ARP и функцию DHCP snooping для соответствующей группы VLAN.

console(config)# ip dhcp snooping
console(config)# ip dhcp snooping vlan 398
console(config)# ip arp inspection
console(config)# ip arp inspection vlan 398

На порт, за которым находится DHCP-север необходимо ввести настройку:

console(config-if)# set port-role uplink
console(config-if)# port-security-state trusted

Источник:
docs.eltex-co.ru

[MES] Настройка BFD для BGP на MES5312, MES5314A, MES5324A, MES5332A
Протокол BFD позволяет быстро обнаружить неисправности линков и оперативно перестраивать таблицу маршрутизации, удаляя неактуальные маршруты. BFD может работать как со статическими маршрутами, так и с протоколами динамической маршрутизации RIP, OSPF, BGP.

Протокол BFD позволяет быстро обнаружить неисправности линков и оперативно перестраивать таблицу маршрутизации, удаляя неактуальные маршруты. BFD может работать как со статическими маршрутами, так и с протоколами динамической маршрутизации RIP, OSPF, BGP.
В текущей версии ПО реализована работа только с протоколом BGP.

Добавить BFD-соседа:

console(config)# bfd neighbor ip_addr [interval int ] [min-rx min] [multiplier mult_num]

int – минимальный интервал передачи для обнаружения ошибки;
- min – минимальный интервал приёма для обнаружения ошибки.
- mult_num – количество потерянных пакетов до разрыва сессии

Пример:

console(config)#bfd neighbor 1.1.1.1 interval 300 min-rx 300 multiplier 3

Включить протокол BFD на BGP-соседе:

console(router-bgp-nbr)# fall-over bfd

 

Диагностика протокола BFD:

show ip bfd neighbors

Источник:
docs.eltex-co.ru

[MES] Настройка BFD для BGP на MES5448 MES7048
Протокол BFD позволяет быстро обнаружить неисправности линков и оперативно перестраивать таблицу маршрутизации, удаляя неактуальные маршруты. BFD может работать как со статическими маршрутами, так и с протоколами динамической маршрутизации RIP, OSPF, BGP.

Настроить BFD-сессию между двумя коммутаторами:

 

SW1:

feature bfd
bfd interval 200 min_rx 200 multiplier 3
router bgp 64700
bgp router-id 1.1.1.1
neighbor 4.0.0.2 fall-over bfd

 

SW2:

 

feature bfd
bfd interval 200 min_rx 200 multiplier 3
router bgp 64700
neighbor 4.0.0.1 fall-over bfd
exit

 

Значения:

- interval – минимальный интервал передачи для обнаружения ошибки;

- min_rx – минимальный интервал приёма для обнаружения ошибки.

- multiplier – количество потерянных пакетов до разрыва сессии

Проверить состояние BFD сессии:

show bfd neighbors details

Источник:
docs.eltex-co.ru

[MES] Настройка BGP на MES5312, MES5314A, MES5324A, MES5332A
BGP (Border Gateway Protocol – протокол граничного шлюза) является протоколом маршрутизации между автономными системами (AS). Основной функцией BGP-системы является обмен информацией о доступности сетей с другими системами BGP. Информация о доступности сетей включает список автономных систем (AS), через которые проходит эта информация. BGP является протоколом прикладного уровня и функционирует поверх протокола транспортного уровня TCP (порт 179). После установки соединения передаётся информация обо всех маршрутах, предназначенных для экспорта. В дальнейшем передаётся только информация об изменениях в таблицах маршрутизации.

BGP (Border Gateway Protocol – протокол граничного шлюза) является протоколом маршрутизации между автономными системами (AS). Основной функцией BGP-системы является обмен информацией о доступности сетей с другими системами BGP. Информация о доступности сетей включает список автономных систем (AS), через которые проходит эта информация. BGP является протоколом прикладного уровня и функционирует поверх протокола транспортного уровня TCP (порт 179). После установки соединения передаётся информация обо всех маршрутах, предназначенных для экспорта. В дальнейшем передаётся только информация об изменениях в таблицах маршрутизации.

Функционал BGP на коммутаторах MES23XX/33XX/MES5324 предоставляется по лицензии. Для получения лицензии нужно обратиться в коммерческий отдел.

 

 

Рассмотрим настройку BGP на примере вышеприведенной схемы:

1)Настроить на коммутаторах VLAN, порты:

 

SW1:

 

Отключаем STP, настраиваем фильтрацию BPDU-сообщений:

console(config)# no spanning-tree
console(config)# spanning-tree bpdu filtering

Добавляем VLAN во vlan database:


console(config)# vlan database
console(config)# vlan 30

Настраиваем порты, добавляем VLAN в разрешенные, запрещаем прохождение дефолтного VLAN для избежания петли:


console(config)# interface tengigabitethernet1/0/11
console(config-if)# switchport mode trunk
console(config-if)# switchport trunk allowed vlan add 30
console(config-if)# switchport forbidden default-vlan

 

2)Настраиваем IP-адреса на VLAN:


console(config)# interface vlan 30
console(config-if)# ip address 3.0.0.1 255.255.255.0

SW2:


console(config)# no spanning-tree
console(config)# spanning-tree bpdu filtering

console(config)# vlan database
console(config)# vlan 30

console(config)# interface tengigabitethernet1/0/11
console(config-if)# switchport mode trunk
console(config-if)# switchport trunk allowed vlan add 30
console(config-if)# switchport forbidden default-vlan

console(config)# interface vlan 30
console(config-if)# ip address 3.0.0.2 255.255.255.0

3)Настроить BGP на коммутаторах в соответствующих AS:

 

SW1:

 

Включаем маршрутизацию по протоколу BGP. Задаем идентификатор AS и переходит в режим её конфигурирования.

console(config)# router bgp 64700

Задаем идентификатор BGP-маршрутизатора 

console(router-bgp)# bgp router-id 1.1.1.1

Указываем тип IPv4 Address Family и переходим в режим её конфигурирования

console(router-bgp)# address-family ipv4 unicast

Включаем редистрибьюцию connected-сетей в BGP

console(router-bgp-af)# redistribute connected

Добавляем BGP-соседа и переходим в режим его конфигурирования

console(router-bgp)# neighbor 3.0.0.2

Задаём номер автономной системы, в которой находится BGP-сосед

console(router-bgp-nbr)# remote-as 64701

Указывает тип IPv4 Address Family для BGP-соседа (по умолчанию активен тип IPv4 AF глобально и для соседей)

console(router-bgp-nbr)# address-family ipv4 unicast

Для SW2 настраивается аналогично.

 

router bgp 64701
bgp router-id 2.2.2.2
address-family ipv4 unicast
redistribute connected
exit
!
neighbor 3.0.0.1
remote-as 64700
address-family ipv4 unicast
exit
exit

 

Примечания:

1)Для подмены значения атрибута NEXT_HOP на локальный адрес маршрутизатора используется команда 

console(router-bgp-nbr)# next-hop-self

Настройка актуальна при приеме маршрута от eBGP-соседа из другой AS и дальнейшей отправке этого маршрута внутри AS другим iBGP-соседям.

 

Диагностика протокола BGP

show ip bgp - таблица BGP-маршрутов

show ip bgp neighbor -  отображение информации о настроенных BGP-соседях

clear ip bgp - переустанавливает соединения с BGP-соседями, очищая принятые от них маршруты.

Источник:
docs.eltex-co.ru

[MES] Настройка BGP на MES5448 MES7048
Между SW1,SW2 поднимем eBGP-сессию. Соответственно между SW3-SW2, SW1-SW4 поднимем iBGP-сессии. Рассмотрим конфигурации каждого узла.

Рассмотрим простую топологию из 4х устройств.

 

 

 

 

Между SW1,SW2 поднимем eBGP-сессию. Соответственно между SW3-SW2, SW1-SW4 поднимем iBGP-сессии. Рассмотрим конфигурации каждого узла.

SW1:

1) В первую создаем необходимые vlan, включаем ip routing, отключаем глобально stp, включаем фильтрацию stp bpdu. Для удобства изменяем hostname.

hostname "SW1"
vlan database
vlan 20,30
vlan routing 20 
vlan routing 30 
exit
configure
ip routing
no spanning-tree
spanning-tree bpdufilter default

2)  Далее настроим порты и ip-адреса на интерфейсах vlan.

interface 1/0/1
no shutdown
vlan participation exclude 1
vlan participation include 30
vlan tagging 30
exit
interface 1/0/2
no shutdown
vlan participation exclude 1
vlan participation include 20
vlan tagging 20
exit
interface vlan 30
no shutdown
routing
ip address 3.0.0.1 255.255.255.252
exit
interface vlan 20
no shutdown
routing
ip address 2.0.0.1 255.255.255.252
exit

3) Настроим BGP 

router bgp 64700
bgp router-id 1.1.1.1
network 3.0.0.0 mask 255.255.255.0
network 2.0.0.0 mask 255.255.255.0
neighbor 3.0.0.2 remote-as 64600
neighbor 2.0.0.2 remote-as 64700
address-family vpnv4 unicast
exit
exit
exit

Остальные коммутаторы настраиваются по аналогии.

SW2:

hostname "SW2"
vlan database
vlan 10,30
vlan routing 10 
vlan routing 30 
exit
configure
ip routing
no spanning-tree
spanning-tree bpdufilter default
!
interface 1/0/3
no shutdown
vlan participation exclude 1
vlan participation include 30
vlan tagging 30
exit
interface 1/0/2
no shutdown
vlan participation exclude 1
vlan participation include 10
vlan tagging 10
exit
interface vlan 30
no shutdown
routing
ip address 3.0.0.2 255.255.255.252
exit
interface vlan 10
no shutdown
routing
ip address 10.0.0.2 255.255.255.252
exit
router bgp 64700
bgp router-id 2.2.2.2
network 3.0.0.0 mask 255.255.255.0
network 10.0.0.0 mask 255.255.255.0
neighbor 3.0.0.1 remote-as 64700
neighbor 10.0.0.1 remote-as 64600
address-family vpnv4 unicast
exit
exit
exit

SW3:

hostname "SW3"
vlan database
vlan 10
vlan routing 10
exit
configure
ip routing
no spanning-tree
spanning-tree bpdufilter default
!
interface 1/0/1
no shutdown
vlan participation exclude 1
vlan participation include 10
vlan tagging 10
exit
interface vlan 10
no shutdown
routing
ip address 10.0.0.1 255.255.255.252
exit
router bgp 64600
bgp router-id 3.3.3.3
network 10.0.0.0 mask 255.255.255.0
neighbor 10.0.0.2 remote-as 64600
address-family vpnv4 unicast
exit
exit
exit


SW4:

hostname "SW4"
vlan database
vlan 20
vlan routing 20
exit
configure
ip routing
no spanning-tree
spanning-tree bpdufilter default
!
interface 1/0/4
no shutdown
vlan participation exclude 1
vlan participation include 20
vlan tagging 20
exit
interface vlan 20
no shutdown
routing
ip address 2.0.0.2 255.255.255.252
exit
router bgp 64600
bgp router-id 4.4.4.4
network 2.0.0.0 mask 255.255.255.0
neighbor 2.0.0.1 remote-as 64700
address-family vpnv4 unicast
exit
exit
exit

Устранение неисправностей.

show run
show ip bgp
show ip bgp neighbors
show ip bgp summary

Источник:
docs.eltex-co.ru

[MES] Настройка dhcp server
Пример настройки для VLAN 101

Отключить DHCP client в vlan 1

  • interface vlan 1
  • no ip address dhcp

Включить DHCPсервер и настроить пул выдаваемых адресов:

  • ip dhcp server 
  • ip dhcp pool network Test 
  • address low 192.168.101.10 high 192.168.101.254 255.255.255.0 
  • default-router 192.168.101.2 
  • dns-server 10.10.10.10 
  • exit

Задать для интерфейса VLAN101 IPадрес и сетевую маску (это будет адрес DHCPсервера) :

  • interface vlan 101 
  • ip address 192.168.101.1 255.255.255.0 
  • exit 

Назначить VLAN101 на Ethernet порт, к которому подключен пользователь (например, gi1/0/1):

  • interface gigabitethernet 1/0/1 
  • switchport access vlan 101 
  • exit 

Источник:
docs.eltex-co.ru

[MES] Настройка ECMP для MES23xx/33xx/53xx
Балансировка нагрузки ЕСМР (Equal-cost multi-path routing) позволяет передавать пакеты одному получателю по нескольким «лучшим маршрутам».

Данный функционал предназначен для распределения нагрузки и оптимизации пропускной способности сети. ЕСМР может работать как со статическими маршрутами, так и с протоколами динамической маршрутизации RIP, OSPF, BGP. Максимально можно настроить 8 путей.

По умолчанию метод балансировки src-dst-mac-ip, изменить можно командой Port-Channel load-balance

Пример настройки ECMP:

MES2324(config)#ip maximum-paths 3

P.S.Настройка вступит в силу только после сохранения конфигурации и перезагрузки устройства.

Просмотр текущих настроек:

MES2324#show ip route 
Maximum Parallel Paths: 1 (1 after reset)
Load balancing: src-dst-mac-ip

Источник:
docs.eltex-co.ru

[MES] Настройка ECMP на MES5312, MES5316A, MES5324A, MES5332A
Балансировка нагрузки ЕСМР (Equal-cost multi-path routing) позволяет передавать пакеты одному получателю по нескольким «лучшим маршрутам». Данный функционал предназначен для распределения нагрузки и оптимизации пропускной способности сети. ЕСМР может работать как со статическими маршрутами, так и с протоколами динамической маршрутизации RIP, OSPF, BGP. Максимально можно настроить 8 путей.

Балансировка нагрузки ЕСМР (Equal-cost multi-path routing) позволяет передавать пакеты одному получателю по нескольким «лучшим маршрутам». Данный функционал предназначен для распределения нагрузки и оптимизации пропускной способности сети. ЕСМР может работать как со статическими маршрутами, так и с протоколами динамической маршрутизации RIP, OSPF, BGP. Максимально можно настроить 8 путей.

По умолчанию метод балансировки src-dst-mac-ip, изменить можно командой Port-Channel load-balance

Пример настройки ECMP:

console(config)# ip maximum-paths 3

P.S.Настройка вступит в силу только после сохранения конфигурации и перезагрузки устройства.

Просмотр текущих настроек:

console# show ip route
Maximum Parallel Paths: 1 (1 after reset)
Load balancing: src-dst-mac-ip

Источник:
docs.eltex-co.ru

[MES] Настройка GVRP
GARP VLAN Registration Protocol (GVRP) – протокол VLAN-регистрации.

Протокол позволяет распространить по сети идентификаторы VLAN. Основной функцией протокола GVRP является обнаружение информации об отсутствующих в базе данных коммутатора VLAN-сетях при получении сообщений GVRP. Получив информацию об отсутствующих VLAN, коммутатор добавляет ее в свою базу данных, как Type  - dynamicGvrp .

 

Пример настройки switch1

Распространить vlan 300 по сети.

console(config)# gvrp enable
console(config)# interface gigabitethernet1/0/1
console(config-if)# gvrp enable
console(config-if)# swichport mode trunk
console(config-if)# swichport trunk allowed add 100,300

Пример настройки на switch2

console(config)# gvrp enable
console(config)# interface gigabitethernet1/0/1
console(config-if)# gvrp enable
console(config-if)# swichport mode trunk
console(config-if)# swichport trunk allowed add 100

27-Jul-2016 11:53:25 %VLAN-I-GVRPAddVlan: Dynamic VLAN Vlan 300 was added by GVRP
27-Jul-2016 11:53:25 %VLAN-I-GVRPAddPort: Dynamic port gi1/0/1 was added to VLAN Vlan 300 by GVRP

switch2#sh vlan 
Vlan mode: Basic

Vlan Name Tagged ports Untagged ports Type Authorization
1 - - gi1/0/1-7,gi1/0/9-28,Po1- Default Required
100 - gi1/0/1 - permanent Required
300 - gi1/0/1 - dynamicGvrp Required

 

По умолчанию VLAN c  Type  - dynamicGvrp нельзя  назначить на порт.  Для этого  vlan  нужно добавить  в vlan database.

 

Начиная с версии 4.0.9 и 1.1.48/2.5.48 доступен функционал отключения анонса по gvrp определенного vlan. Используется команда gvrp advertisement-forbid в контесте конфигурирования interface vlan.

console(config)#interface vlan 1

console(config-if)#gvrp advertisement-forbid 

В версии 4.0.11 появился функционал автоматического сохранения в динамического vlan, полученного по gvrp,  в vlan database.  Для настройки используется команда  gvrp static-vlan в режиме глобального конфигурирования.

Источник:
docs.eltex-co.ru

[MES] Настройка GVRP на MES5448 MES7048
GARP VLAN Registration Protocol (GVRP) – протокол VLAN-регистрации. Протокол позволяет распространить по сети идентификаторы VLAN. Основной функцией протокола GVRP является обнаружение информации об отсутствующих в базе данных коммутатора VLAN-сетях при получении сообщений GVRP. Получив информацию об отсутствующих VLAN, коммутатор добавляет ее в свою базу данных, как Type - dynamicGvrp .

GARP VLAN Registration Protocol (GVRP) – протокол VLAN-регистрации. Протокол позволяет распространить по сети идентификаторы VLAN. Основной функцией протокола GVRP является обнаружение информации об отсутствующих в базе данных коммутатора VLAN-сетях при получении сообщений GVRP. Получив информацию об отсутствующих VLAN, коммутатор добавляет ее в свою базу данных, как Type  - dynamicGvrp .

 

Пример настройки. Необходимо распространить VLAN 300 c коммутаторов SW1 и SW3 на порты коммутатора SW2.

 

 

Конфигурация SW1

vlan database
vlan 300
vlan routing 300 1
exit
!
set gvrp adminmode     
!
conf
!
interface 1/0/1
 no shutdown
 swichport mode trunk
 set gvrp interfacemode
exit
!
interface vlan 300
 ip address 10.0.0.1 /24
exit

 

Конфигурация SW2

 

vlan database
vlan 100
vlan routing 100 1
exit
!
set gvrp adminmode     
!
conf
!
interface 1/0/1
 no shutdown
 swichport mode trunk
 set gvrp interfacemode
exit
!
interface 1/0/2
 no shutdown
 swichport mode trunk
 set gvrp interfacemode
exit

 

Конфигурация SW3

 

vlan database
vlan 300
vlan routing 300 1
exit
!
set gvrp adminmode     
!
conf
!
interface 1/0/1
 no shutdown
 swichport mode trunk
 set gvrp interfacemode
exit
!
interface vlan 300
 ip address 10.0.0.2 /24
exit

 

C помощью диагностических команд убедиться, что VLAN 300 добавился на порту SW2

 

console#show vlan

Vlan
Name
Tagged ports
Untagged ports
Type
100 VLAN0100 1/0/1-2    Static
300   1/0/1-2   Dynamic (GVRP)

Источник:
docs.eltex-co.ru

[MES] Настройка IGMP MES1428 MES24xx
Функция IGMP Snooping используется в сетях групповой рассылки. Основной задачей IGMP Snooping является предоставление многоадресного трафика только для тех портов, которые запросили его.

Пример настройки. Multicast-трафик передается в vlan 10. Клиенты за портом gi0/1.

 

configure terminal

vlan 10
vlan active
ip igmp snooping
exit
ip igmp snooping
interface gigabitethernet 0/1
no shutdown
switchport general allowed vlan add 10 untagged
switchport general pvid 10
exit
interface gigabitethernet 0/26
no shutdown
switchport general allowed vlan add 10
exit

 

Для настройки статического mrouter-порта используются команды:

Vlan 10
ip igmp snooping mrouter gigabitethernet 0/26

 

Для запрета изучения mrouter-портов применяется команда

vlan 10
ip igmp snooping blocked-router gi 0/х

 

Show-команды:

show ip igmp snooping groups - показать информацию об изученных многоадресных группах, участвующих в групповой рассылке

show ip igmp snooping mrouter - показать информацию об изученных многоадресных маршрутизаторах

show ip igmp snooping forwarding-database - показать информацию о поступающем multicast-трафике

Источник:
docs.eltex-co.ru

[MES] Настройка IGMP Proxy между VLAN на MES5312 MES5316A MES5324A MES5332A
Функция маршрутизации многоадресного трафика IGMP Proxy дает возможность коммутатору используя информацию, получаемую при обработке сообщений протокола IGMP, распознавать сведения о принадлежности интерфейсов к многоадресным группам и осуществлять на основе этих данных пересылку многоадресных данных между сетями.

Функция маршрутизации многоадресного трафика IGMP Proxy дает возможность коммутатору используя информацию, получаемую при обработке сообщений протокола IGMP, распознавать сведения о принадлежности интерфейсов к многоадресным группам и осуществлять на основе этих данных пересылку многоадресных данных между сетями.

Данный пример описывает настройку функции IGMP Proxy на коммутаторе.

  • в качестве интерфейса к вышестоящей сети 10.1.0.0 использовать VLAN 100.
  • в качестве интерфейсов к нижестоящим сетям 10.2.0.0 и 10.3.0.0 использовать VLAN 101 и 102 соответственно.

Пример

console# configure

console (config)# vlan 100-102

console (config)# ip multicast-routing igmp-proxy

console (config)# interface vlan 100

console (config-if)# ip address 10.1.0.1 /24

console (config-if)# exit

console (config)# interface vlan 101

console (config-if)# ip igmp-proxy vlan 100

console (config-if)# ip address 10.2.0.1 /24

console (config-if)# exit

console (config)# interface vlan 102

console (config-if)# ip igmp-proxy vlan 100

console (config-if)# ip address 10.3.0.1 /24

console (config-if)# exit

Источник:
docs.eltex-co.ru

[MES] Настройка IGMP snooping fast-leave host based MES1400 MES2400
Настройка позволяет удалить запись в таблице igmp snooping для конкретного устройства за портом при получении igmp leave сообщения. Для настройки igmp snooping fast-leave необходимо выполнить следующие настройки.

Пример настройки для мультикаст vlan 10 для порта  gigabitethernet 0/1

(config)# snooping leave-process config-level port

(config)# vlan 10
console(config-vlan)#ip igmp snooping
console(config-vlan)#ip igmp snooping fast-leave
console(config-vlan)#ip igmp snooping sparse-mode enable

(config)# interface gigabitethernet 0/1
(config-if)# ip igmp snooping leavemode exp-hosttrack

Источник:
docs.eltex-co.ru

[MES] Настройка IGMP Snooping на MES5312 MES5316A MES5324A MES5332A
Функция IGMP Snooping используется в сетях групповой рассылки. Основной задачей IGMP Snooping является предоставление многоадресного трафика только для тех портов, которые запросили его.

Функция IGMP Snooping используется в сетях групповой рассылки. Основной задачей IGMP Snooping является предоставление многоадресного трафика только для тех портов, которые запросили его.

Пример настройки

  • Включить фильтрацию многоадресных данных:

console(config)# bridge multicast filtering

  • Настроить VLAN для передачи многоадресных данных (VID1000):

console(config)# vlan database

console(config-vlan)# vlan 1000

console(config-vlan)# exit

  • Настроить порты, через которые разрешено передавать многоадресные данные, например, te 1/0/1-2:

console(config)# interface range te 1/0/1-2

console(config-if)# switchport mode trunk

console(config-if)# switchport trunk allowed vlan add 1000

console(config-if)# exit

  • Настроить igmpsnooping глобально и на VLAN интерфейсах:

console(config)# ip igmp snooping

console(config)# ip igmp snooping vlan 1000

Источник:
docs.eltex-co.ru

[MES] Настройка IP source guard на MES1400 MES2400
Функция защиты IP-адреса (IP Source Guard) предназначена для фильтрации трафика, принятого с интерфейса, на основании таблицы соответствий DHCP snooping и статических соответствий IP Source Guard. Таким образом, IP Source Guard позволяет бороться с подменой IP-адресов в пакетах.

Поскольку функция контроля защиты IP-адреса использует таблицы соответствий DHCP snooping, имеет смысл использовать данную функцию, предварительно настроив и включив DHCP snooping.

Пример настройки

Включить функцию защиты IP-адреса для фильтрации трафика на основании таблицы соответствий DHCP snooping и статических соответствий IP Source Guard. Интерфейс в 398-й группе VLAN:

console(config)# ip dhcp snooping
console(config)# ip dhcp snooping vlan 398

Создать статическую запись в таблице соответствия для интерфейса, например, для gigabitethernet 0/10: IP-адрес клиента – 192.168.2.10, его MAC-адрес – 00:11:22:33:44:55:

console(config)# ip source binding 00:11:22:33:44:55 vlan 398 192.168.2.10 interface gigabitethernet 0/10

Включить функцию защиты IP-адреса для интерфейса gigabitethernet 0/10:

console(config-if)# ip verify source port-security
console(config-if)# port-security-state trusted

На порт, за которым находится DHCP-север необходимо ввести настройку:

console(config-if)# set port-role uplink
console(config-if)# port-security-state trusted

Источник:
docs.eltex-co.ru

[MES] Настройка IP source guard на MES5312, MES5316A, MES5324A, MES5332A
Функция защиты IP-адреса (IP Source Guard) предназначена для фильтрации трафика, принятого с интерфейса, на основании таблицы соответствий DHCP snooping и статических соответствий IP Source Guard. Таким образом, IP Source Guard позволяет бороться с подменой IP-адресов в пакетах.

Функция защиты IP-адреса (IP Source Guard) предназначена для фильтрации трафика, принятого с интерфейса, на основании таблицы соответствий DHCP snooping и статических соответствий IP Source Guard. Таким образом, IP Source Guard позволяет бороться с подменой IP-адресов в пакетах.

Поскольку функция контроля защиты IP-адреса использует таблицы соответствий DHCP snooping, имеет смысл использовать данную функцию, предварительно настроив и включив DHCP snooping.

Пример настройки

  • Включить функцию защиты IP-адреса для фильтрации трафика на основании таблицы соответствий DHCP snooping и статических соответствий IP Source Guard. Интерфейс в 1-й группе VLAN:

console(config)# ip dhcp snooping

console(config)# ip dhcp snooping vlan 1

console(config)# ip source-guard

  • Создать статическую запись в таблице соответствия для интерфейса, например, для Tengigabitethernet 1/0/1: IP-адрес клиента – 192.168.1.210, его MAC-адрес – 00:60:70:4A:AB:AF:

console(config)# ip source-guard binding 00:60:70:4A:AB:AF 1 192.168.1.210 Tengigabitethernet 1/0/1

  • Включить функцию защиты IP-адреса для интерфейса Tengigabitethernet 1/0/1:

console(config-if)# ip source-guard

Источник:
docs.eltex-co.ru

[MES] Настройка IP Unnumbered на MES5448 MES7048
Функционал IP Unnumbered позволяет в условиях нехватки IP адресов заимствовать IP-адрес с уже настроенного интерфейса.

Функционал IP Unnumbered позволяет в условиях нехватки IP адресов заимствовать IP-адрес с уже настроенного интерфейса.

 

1.Настроить на ПК следующие параметры:

 

ПК1 подключен к gi0/3, назначен  ip 10.0.0.1 /24 default-gateway 10.0.0.2
ПК2 подключен к gi0/1, назначен ip 5.5.5.2 /24 default-gateway 5.5.5.1
ПК3 подключен к gi0/2, назначен ip 5.5.5.3 /24 default-gateway 5.5.5.1

 

2. Настроить IP Unnumbered на коммутаторе SW1

 

vlan database
vlan 10,20,30
vlan routing 10 1
vlan routing 20 2
vlan routing 30 3
exit
!
interface loopback 5
no shutdown
ip address 5.5.5.1 255.255.255.0
exit
!
interface 1/0/1
no shutdown
switchport mode access
switchport access vlan 20
exit
!
interface 1/0/2
no shutdown
switchport mode access
switchport access vlan 10
exit
!
interface 1/0/3
no shutdown
switchport mode access
switchport access vlan 30
exit
!
interface vlan 10
routing
ip unnumbered loopback 5
exit
!
interface vlan 20
routing
ip unnumbered loopback 5
exit
!
interface vlan 30
routing
ip address 10.0.0.2 255.255.255.0
exit

 

Все ПК могут обмениваться информацией между собой.

 

Источник:
docs.eltex-co.ru

[MES] Настройка IPv6 адреса на коммутаторах MES
Настройка IPv6 адреса:

1) Stateless auto-configuration

 

Является режимом по-умолчанию. Включается следующим образом:

(config)#interface vlan x

(config)#ipv6 enable

 

После ввода команды устройство получает link-local адрес и может взаимодействовать с другими устройствами в данном сегменте сети.

 

Проверить наличие адреса командой:

 

console(config-if)#do sh ipv6 int

 

Interface IP addresses Type

----------- ------------------------------------------------ ------------

VLAN X fe80::e2d9:e3ff:fef1:dc80 linklayer

VLAN X ff02::1 linklayer

VLAN X ff02::1:fff1:dc80 linklayer

 

Адрес ff02::1, т.н. ‘all-nodes’ мультикаст-адрес, который прослушивается всеми узлами сети.

Адрес ff02::1:fff1:dc80 - ‘solicited-node’ мультикаст-адрес, имеет значение в локальном сегменте сети и служит для получения адреса 2-го уровня в рамках протокола NDP (аналог ARP в сетях IPv4).

 

Формирование link-layer адреса.

Link-local адреса всегда начинаются с префикса FE80::/10, к которому присоединяется идентификатор устройства, включающий мак-адрес. Данный идентификатор формируется по алгоритму EUI-64.

Пример:

Пусть коммутатор имеет мак-адрес e0:d9:e3:f1:dc:80. Согласно EUI-64 мак-адрес разбивается на 2 части по 24 бита - e0:d9:e3 и f1:dc:80, которые разделяются вставкой из 16 бит – FFFE. В первой 24-битной части инвертируется бит U/L. Таким образом, из имеющегося мак-адреса получаем link-local адрес fe80::/10 + e2d9e3 +fffe+f1dc80 -> fe80::e2d9:e3ff:fef1:dc80.

 

2) Настройка адреса вручную

 

Настройка вручную осуществляется следующим образом:

 

(config)#interface vlan x

(config)#ipv6 enable # включение ipv6 является обязательным требованием

 

Далее можно задать желаемый global-scope адрес вручную:

 

(config)#ipv6 address 2001::a/64,

 

задать желаемый link-local адрес вручную:

 

(config)#ipv6 address fe80::a/64 link-local,

 

или использовать формирование адреса по алгоритму EUI-64:

 

(config)#ipv6 address 2001::/64 eui-64.

 

Если при назначении адреса вручную не указывать область действия(scope) адреса как link-local, то адреса будут доступны вне локального сегмента сети и будут маршрутизироваться в сетях.

 

Примечание: на коммутаторах MES не предусмотрено получение адреса с помощью DHCPv6.

Источник:
docs.eltex-co.ru

[MES] Настройка Management ACL на MES1400 MES2400
Management ACL фильтрует трафик управления (ssh/telnet/snmp/http/https), который предназначается коммутатору (dst mac/ip коммутатора) и применяется глобально.

В Management ACL создаются только разрешающие правила. Всё что под них не попадает – запрещено.

  • Разрешить прохождение всего трафика из сети 10.10.10.0 /24 в VLAN 100
  • Разрешить доступ до web-сервера с хоста 30.30.30.1
  • Все остальное запретить (неявное правило deny any any)

console(config)# authorized-manager ip-source 10.10.10.0 255.255.255.0
interface gigabitethernet 0/1-24 vlan 100
console(config)# authorized-manager ip-source 30.30.30.1 255.255.255.255
interface gigabitethernet 0/1-24 service https

Источник:
docs.eltex-co.ru

[MES] Настройка Management ACL на MES5312, MES5316A, MES5324A, MES5332A
Доступ к коммутатору можно ограничить при помощи Management ACL.

Доступ к коммутатору можно ограничить при помощи Management ACL.

Ниже приведен пример ограничения доступа по IP-адресу источника (IP 192.168.1.12).

1. Создать Management ACL с указанием IP-адреса источника:

console# configure
console(config)# management access-list IP
console(config-macl)# permit ip-source 192.168.1.12
console(config-macl)# exit

2. Применить созданный Management ACL:

console(config)# management access-class IP

Для просмотра информации по созданным и примененным листам необходимо воспользоваться командами show:

console# show management access-list
IP
----
permit ip-source 192.168.1.12
! (Note: all other access implicitly denied)

console-only
------------
deny
! (Note: all other access implicitly denied)

console# show management access-class
Management access-class is enabled, using access-list IP

Источник:
docs.eltex-co.ru

[MES] Настройка Management ACL на MES5448 MES7048
Доступ к коммутатору можно ограничить при помощи Management ACL. Ниже приведен пример ограничения доступа по IP-адресу источника (IP 192.168.2.1).
  1. Создать Management ACL с указанием IP-адреса источника:

console# configure

console(Config)# management access-list MGMT

console(config-macal)# permit ip-source 192.168.2.1

console(config-macal)# exit

 

Варианты permit/deny managment access-list:

ethernet - по порту

port-channel - по группе портов

ip-source - по IP адресу

vlan - по номеру VLAN

Протоколы:

service {any, http, https, snmp, sntp, ssh, telnet, tftp}

Примеры:

Разрешить управление только по SNMP,  остальные сервисы запретить:

(config-macal)# permit service snmp

Разрешить управление с указанием IP-адреса источника:

(config-macal)# permit ip-source 192.168.2.1

Разрешить управление во VLAN 1 по Telnet, остальные сервисы запретить:

(config-macal)# permit vlan 1 service telnet

Разрешить управление через 1/0/1 порт по SSH, остальные сервисы запретить:

(config-macal)# permit ethernet 1/0/1 service ssh

 

  1. Применить созданный Management ACL:

console(Config)# management access-class MGMT

 

Для просмотра информации по созданным и примененным листам необходимо воспользоваться командами show:

console# show management access-list

List Name...................................... MGMT

List Admin Mode................................ Enabled

Packets Filtered............................... 0

 

Rules:

permit ip-source 192.168.2.1 mask 255.255.255.255 priority 1

NOTE: All other access is implicitly denied.

 

console# show management access-class

Management access-class is enabled, using access list MGMT.

Источник:
docs.eltex-co.ru

[MES] Настройка Multi-Switch Link Aggregation Group (MLAG)
Как и LAG, виртуальные LAG позволяют объединить одну или несколько Ethernet-линий для увеличения скорости и обеспечения отказоустойчивости. MLAG так же известна как VPC (Virtual port-channel). При обычном LAG агрегированные линии должны быть на одном физическом устройстве, в случае же с VPC агрегированные линии находятся на разных физических устройствах.

Как и LAG, виртуальные LAG позволяют объединить одну или несколько Ethernet-линий для  увеличения скорости и обеспечения отказоустойчивости. MLAG так же известна как VPC (Virtual port-channel). При обычном LAG агрегированные линии должны быть на одном физическом устройстве, в случае же с VPC агрегированные линии находятся на разных физических устройствах.
Функция VPC позволяет соединить два физических устройства в одно виртуальное.

Один из коммутаторов имеет роль VPC-primary, второй VPC-secondary

 

Настройка MLAG на коммутаторах:

 

SW1:

 

vlan database
vlan 5,100
vlan routing 1 1
vlan routing 5 2
vlan routing 100 3
exit

configure

interface 1/0/1
addport lag 1
exit
interface 1/0/2
addport lag 2
exit
interface 1/0/48
addport lag 48
exit
!
interface 1/0/1
no shutdown
exit
!
interface 1/0/2
no shutdown
exit
!
interface 1/0/48
no shutdown
exit
!
interface lag 1
no port-channel static
switchport mode trunk
vpc 1
exit
!
interface lag 2
switchport mode trunk
vpc 2
exit
!
interface lag 48
switchport mode trunk
vpc peer-link
exit
!
interface vlan 1
routing
ip address 10.1.0.21 255.255.255.0
exit
!
interface vlan 5
routing
ip address 10.5.0.1 255.255.255.0
exit
!
feature vpc
vpc domain 1
peer-keepalive enable
peer-keepalive destination 10.5.0.2 source 10.5.0.1
peer detection enable
exit
exit

 

SW2

 

vlan database
vlan 5,100
vlan routing 1 1
vlan routing 5 2
vlan routing 100 3
exit

configure
interface 1/0/1
addport lag 1
exit
interface 1/0/2
addport lag 2
exit
interface 1/0/48
addport lag 48
exit
!
interface 1/0/1
no shutdown
exit
!
interface 1/0/2
no shutdown
exit
!
interface 1/0/48
no shutdown
exit
!
interface lag 1
no port-channel static
switchport mode trunk
vpc 1
exit
!
interface lag 2
switchport mode trunk
vpc 2
exit
!
interface lag 48
switchport mode trunk
vpc peer-link
exit
!
interface vlan 1
routing
ip address 10.1.0.22 255.255.255.0
exit
!
interface vlan 5
routing
ip address 10.5.0.2 255.255.255.0
exit
!
feature vpc
vpc domain 1
peer-keepalive enable
peer-keepalive destination 10.5.0.1 source 10.5.0.2
peer detection enable
exit
exit

 

На коммутаторах SW3 и SW4 настроить порты и Port-Channel. Разрешить 100 VLAN.

 

С помощью диагностических команд убедиться, что VPC собрался на SW1 и SW2

show vpc 1

show vpc role

Источник:
docs.eltex-co.ru

[MES] Настройка MVR (Multicast vlan registration) MES1400 MES2400
Функция «Multicast-TV VLAN» дает возможность использовать для передачи многоадресного трафика одну VLAN в сети оператора и доставлять этот трафик пользователям даже в том случае, если они не являются членами этой VLAN. С помощью функции «MVR» может быть сокращена нагрузка на сеть оператора за счет отсутствия дублирования многоадресных данных при предоставлении услуги IPTV.

Пример настройки MVR. Аплинк порт - gigabitethernet 0/1, fastethernet 0/1 - клиентский порт.  vlan 10 - клиентский вилан, vlan 100 - мультикаст вилан

 

Создаем и активируем vlan

console(config)# vlan 10,100
console(config-vlan)# vlan active
console(config-vlan)# exit

 

Создаем и активируем мультиксат профиль. Указываем в профиле диапазоны мультикаст групп, которые будут поступать  на коммутатор. Это обязательный шаг

console(config)# ip mcast profile 1
console(config-profile)# permit
console(config-profile)# range 232.0.0.1 232.0.0.5
console(config-profile)# profile active
console(config-profile)# exit

 

Активируем ip igmp snooping для vlan 100.

console(config)# ip igmp snooping
console(config)# ip igmp snooping vlan 100

 

Настроить режим обработки мультикаст трафика ip

console(config)# snooping multicast-forwarding-mode ip

 

Активировать MVR и привязать к нему мультикаст профиль

console(config)# ip igmp snooping multicast-vlan enable
console(config)# vlan 100
console(config-vlan)# ip igmp snooping multicast-vlan profile 1

 

Выполнить настройки на портах

console(config)# interface gigabitethernet 0/1
console(config-if)# switchport mode trunk
console(config-if)# exit
console(config)# interface fastethernet 0/1
console(config-if)# switchport mode access
console(config-if)# switchport access vlan 10
console(config-if)# switchport multicast-tv vlan 100
console(config-if)# exit

Источник:
docs.eltex-co.ru

[MES] Настройка OSPFv2 на MES5448 MES7048
OSPF — протокол динамической маршрутизации, основанный на технологии отслеживания состояния канала (link-state technology) и использующий для нахождения кратчайшего пути Алгоритм Дейкстры. Протокол OSPF представляет собой протокол внутреннего шлюза (IGP). Протокол OSPF распространяет информацию о доступных маршрутах между маршрутизаторами одной автономной системы.

OSPF — протокол динамической маршрутизации, основанный на технологии отслеживания состояния канала (link-state technology) и использующий для нахождения кратчайшего пути Алгоритм Дейкстры. Протокол OSPF представляет собой протокол внутреннего
шлюза (IGP). Протокол OSPF распространяет информацию о доступных маршрутах между маршрутизаторами одной автономной системы.

 

Настраивается протокол следующим образом.

1) Создать vlan. Включить routing в этом vlan. Назначить ip-адрес на интерфейс vlan. 

vlan database
vlan 40
vlan routing 40
exit

interface vlan 40
no shutdown
routing
ip address 4.0.0.1 255.255.255.0
exit

2) Убедиться, что ip routing включен глобально. Если нет, включить:

ip routing

3) В контексте router ospf задать router id

router ospf
router-id 1.1.1.1

4) Включить ospf на  интерфейс vlan.  Настроить тип соединения point-to-point (по умолчанию режим broadcast).

interface vlan 40
no shutdown
routing
ip address 4.0.0.1 255.255.255.0
ip ospf area 1.1.1.1
ip ospf network point-to-point
exit

  • Редистрибуция маршрутов.

Настраивается в контексте router ospf.

console(config-router)# redistribute ?

bgp Source protocol is BGP.
connected Source protocol is connected.
rip Source protocol is RIP.
static Source protocol is static.

 

  • Настройка hello/dead таймеров

Настраивается в контексте интерфейса vlan

console(Interface vlan 100)#ip ospf hello-interval ?

<1-65535> Enter time in seconds.

console(Interface vlan 100)#ip ospf dead-interval ?

<1-65535> Enter time in seconds.

 

  • Настройка стоимости интерфейса

Настраивается в контексте интерфейса vlan

console(Interface vlan 100)# ip ospf cost ?

<1-65535> Enter the cost for the specified interface.

 

  • Настройка приоритета для выбора DR

Настраивается в контексте интерфейса vlan

console(Interface vlan 100)# ip ospf priority ?

<0-255> Enter an integer value.

 

Устранение неисправностей.

1) В первую очередь необходимо убедиться в корректности конфигурации

show running-config

2) Проверить настройки ospf, проверить состояние соседства

show ip ospf 

show ip ospf neighbor

show ip ospf interface brief

3) Проверить версию ПО

show bootvar

Источник:
docs.eltex-co.ru

[MES] Настройка PIM DM IPv4 на MES5312 MES5316A MES5324A MES5332A
PIM — протокол многоадресной маршрутизации для IP-сетей, созданный для решения проблем групповой маршрутизации. PIM базируется на традиционных маршрутных протоколах (например, Border Gateway Protocol), вместо того, чтобы создавать собственную сетевую топологию. PIM использует unicast-таблицу маршрутизации для проверки RPF. Эта проверка выполняется маршрутизаторами, чтобы убедиться, что передача многоадресного трафика выполняется по пути без петель.

PIM — протокол многоадресной маршрутизации для IP-сетей, созданный для решения проблем групповой маршрутизации. PIM базируется на традиционных маршрутных протоколах (например, Border Gateway Protocol), вместо того, чтобы создавать собственную сетевую топологию. PIM использует unicast-таблицу маршрутизации для проверки RPF. Эта проверка выполняется маршрутизаторами, чтобы убедиться, что передача многоадресного трафика выполняется по пути без петель.

 

  1.  Произвести настройку сетевых параметров на ПК.

 

РС2 – ip address 10.3.30.2/24 gateway 10.3.30.1 - Multicast Server

РС1 – ip address 10.2.0.2/24 gateway 10.2.0.1 - Client

 

       2. Настроить на коммутаторах VLAN, IP- адреса, порты:

 

 SW1:

 

vlan database

 vlan 3,30

exit

!

hostname SW1

!

interface tengigabitethernet1/0/11

 switchport mode trunk

 switchport trunk allowed vlan add 30

 switchport forbidden default-vlan

exit

!

interface tengigabitethernet1/0/23                       

 switchport access vlan 3

exit

!

interface vlan 3

 ip address 10.2.0.1 255.255.255.0

exit

!

interface vlan 30

 ip address 3.0.0.1 255.255.255.0

exit

 

SW2:

 

vlan database

 vlan 4,30

exit

!

hostname SW2

!

interface tengigabitethernet1/0/11

 switchport mode trunk

 switchport trunk allowed vlan add 30

 switchport forbidden default-vlan

exit

!

interface tengigabitethernet1/0/12

 switchport access vlan 4

exit

!

interface vlan 4

 ip address 10.3.30.1 255.255.255.0

exit

!

interface vlan 30

 ip address 3.0.0.2 255.255.255.0

exit

 

         3. Настроить протокол PIM на SW1, SW2:

 

SW1:

 

ip multicast-routing pim

!

interface vlan 3

  ip pim

  ip pim join-prune-interval 10

exit

!

interface vlan 30

  ip pim

  ip pim join-prune-interval 10

exit

!

ip pim dm range 224.100.0.0/24

 

SW2:

 

ip multicast-routing pim

!

interface vlan 4

 ip pim

  ip pim join-prune-interval 10

exit

!

interface vlan 30

 ip pim

  ip pim join-prune-interval 10

exit

!                                                     

ip pim dm range 224.100.0.0/24

 

        4.     Настроить любой один из протоколов динамической маршрутизации (OSPF/RIP/BGP), либо статические маршруты

 

SW1:

 

router bgp 64700

 bgp router-id 1.1.1.1

 address-family ipv4 unicast

  redistribute connected

 exit

 !

 neighbor 3.0.0.2

  remote-as 64700

  address-family ipv4 unicast

  exit

 exit

exit

 

SW2:

 

router bgp 64700

 bgp router-id 2.2.2.2

 address-family ipv4 unicast

  redistribute connected

 exit

 !

 neighbor 3.0.0.1

  remote-as 64700

  address-family ipv4 unicast

  exit

 exit

exit

 

        5. Проверить соседство  PIM и наличие всех маршрутов в таблице маршрутизации.

show ip pim neighbor

show ip bgp neighbor

 

       6. Проверить  наличия записей (*,G), (S,G) после запуска мультикаста и клиентов

show ip mroute

Источник:
docs.eltex-co.ru

[MES] Настройка PIM SM IPv4 на MES5312 MES5316A MES5324A MES5332A
PIM — протокол многоадресной маршрутизации для IP-сетей, созданный для решения проблем групповой маршрутизации. PIM базируется на традиционных маршрутных протоколах (например, Border Gateway Protocol), вместо того, чтобы создавать собственную сетевую топологию. PIM использует unicast-таблицу маршрутизации для проверки RPF. Эта проверка выполняется маршрутизаторами, чтобы убедиться, что передача многоадресного трафика выполняется по пути без петель.

PIM — протокол многоадресной маршрутизации для IP-сетей, созданный для решения проблем групповой маршрутизации. PIM базируется на традиционных маршрутных протоколах (например, Border Gateway Protocol), вместо того, чтобы создавать собственную сетевую топологию. PIM использует unicast-таблицу маршрутизации для проверки RPF. Эта проверка выполняется маршрутизаторами, чтобы убедиться, что передача многоадресного трафика выполняется по пути без петель.

RP (rendezvous point) — точка рандеву, на которой будут регистрироваться источники многоадресных потоков и создавать маршрут от источника S (себя) до группы G: (S,G).

BSR (bootsrtap router) — механизм сбора информации о RP кандидатах, формировании списка RP для каждой многоадресной группы и отправка списка в пределах домена. Конфигурация многоадресной маршрутизации на базе IPv4.

  1.  Произвести настройку сетевых параметров на ПК.

 

РС2 – ip address 10.3.30.2/24 gateway 10.3.30.1 - Multicast Server

РС1 – ip address 10.2.0.2/24 gateway 10.2.0.1 - Client

 

       2. Настроить на коммутаторах VLAN, IP- адреса, порты:

 

 SW1:

 

vlan database

 vlan 3,30

exit

!

hostname SW1

!

interface tengigabitethernet1/0/11

 switchport mode trunk

 switchport trunk allowed vlan add 30

 switchport forbidden default-vlan

exit

!

interface tengigabitethernet1/0/23                       

 switchport access vlan 3

exit

!

interface vlan 3

 ip address 10.2.0.1 255.255.255.0

exit

!

interface vlan 30

 ip address 3.0.0.1 255.255.255.0

exit

 

SW2:

 

vlan database

 vlan 4,30

exit

!

hostname SW2

!

interface tengigabitethernet1/0/11

 switchport mode trunk

 switchport trunk allowed vlan add 30

 switchport forbidden default-vlan

exit

!

interface tengigabitethernet1/0/12

 switchport access vlan 4

exit

!

interface vlan 4

 ip address 10.3.30.1 255.255.255.0

exit

!

interface vlan 30

 ip address 3.0.0.2 255.255.255.0

exit

 

         3. Настроить протокол PIM на SW1, SW2:

 

SW1:

 

ip multicast-routing pim

!

interface vlan 3

  ip pim

exit

!

interface vlan 30

  ip pim

exit

!

ip pim rp-address 3.0.0.2 224.100.0.0/24

 

SW2:

 

ip multicast-routing pim

!

interface vlan 4

 ip pim

exit

!

interface vlan 30

 ip pim

exit

!                                                     

ip pim rp-address 3.0.0.2 224.100.0.0/24

 

        4.     Настроить любой один из протоколов динамической маршрутизации (OSPF/RIP/BGP), либо статические маршруты

 

SW1:

 

router bgp 64700

 bgp router-id 1.1.1.1

 address-family ipv4 unicast

  redistribute connected

 exit

 !

 neighbor 3.0.0.2

  remote-as 64700

  address-family ipv4 unicast

  exit

 exit

exit

 

SW2:

 

router bgp 64700

 bgp router-id 2.2.2.2

 address-family ipv4 unicast

  redistribute connected

 exit

 !

 neighbor 3.0.0.1

  remote-as 64700

  address-family ipv4 unicast

  exit

 exit

exit

 

Проверка соседства  PIM 

 

SW1# sh ip pim neighbor

Neighbor Address(es)
 Interface
Uptime
Expires
DR priority
3.0.0.2 vlan30 00:15:56  00:01:22 1  

SW2# sh ip pim neighbor

Neighbor Address(es)
Interface
Uptime
Expires
DR priority
3.0.0.1 vlan30 00:17:18 00:01:26  1

 

Также необходимо проверить наличие всех маршрутов в таблице маршрутизации.

 

Проверка  наличия записей (*,G), (S,G) после запуска мультикаста и клиентов:

 

console_SW1# sh ip mroute

IP Multicast Routing Table

 

Flags: D - Dense, S - Sparse, X - IGMP Proxy, s - SSM Group,

       C - Connected, L - Local, R - RP-bit set, F - Register flag,

       T - SPT-bit set, I - Received Source Specific Host Report

Timers: Uptime/Expires

 

(*, 224.100.0.1), uptime: 00:00:24, expires: never, RP 3.0.0.2, Flags: SL

  Incoming interface: vlan 30, RPF neighbor 3.0.0.2

  Outgoing interface list: vlan 3

 

(10.3.30.2, 224.100.0.1), uptime: 00:00:24, expires: 00:03:06, Flags: STR

  Incoming interface: vlan 30, RPF neighbor 3.0.0.2

  Outgoing interface list: vlan 3

 

console_SW2# sh ip mroute

IP Multicast Routing Table

 

Flags: D - Dense, S - Sparse, X - IGMP Proxy, s - SSM Group,

       C - Connected, L - Local, R - RP-bit set, F - Register flag,

       T - SPT-bit set, I - Received Source Specific Host Report

Timers: Uptime/Expires

 

(*, 224.100.0.1), uptime: 00:00:04, expires: never, RP 3.0.0.2, Flags: S

  Incoming interface: Null, RPF neighbor 3.0.0.2

  Outgoing interface list: vlan 30

 

(10.3.30.2, 224.100.0.1), uptime: 00:01:09, expires: 00:02:21, Flags: STR

  Incoming interface: vlan 4, RPF neighbor 0.0.0.0

  Outgoing interface list: vlan 30

Источник:
docs.eltex-co.ru

[MES] Настройка PIM SSM IPv4 на MES5312 MES5316A MES5324A MES5332A
PIM Source-Specific Multicast (PIM-SSM) — это вариант протокола PIM, который основан на PIM-SM и работает вместе с IGMPv3.

PIM Source-Specific Multicast (PIM-SSM) — это вариант протокола PIM, который основан на PIM-SM и работает вместе с IGMPv3.

IGMPv3 способен отправлять от клиента запрос на присоединение не только к определенной группе, но и на получение пакетов от определенного источника. PIM-SSM указывает какие группы в мультикаст-таблице маршрутизации будут обслуживаться как SSM-группы. 

Так как уже из запроса клиента известно рассылку от какого источника и какой группы хочет получать клиент, то PIM-SSM работает с использованием только SPT-деревьев.

Для SSM выделен специальный диапазон IP-адресов: 232.0.0.0/8.

IGMPv3 и MLDv2 поддерживают SSM в чистом виде.
IGMPv1/v2, MLDv1 не поддерживают SSM, но имеет место такое понятие, как SSM Mapping

 

На коммутаторах для поддержки SSM включается режим PIM SSM:

console(config)# ip pim ssm default

 

На коммутаторах в таблице не будет записей (*, G), только (S, G).

Источник:
docs.eltex-co.ru

[MES] Настройка port security MES1400 MES2400
По умолчанию настроен режим lock. В режиме lock все динамически изученные mac-адреса переходят в состояние static.

По умолчанию настроен режим lock. В режиме lock все динамически изученные mac-адреса переходят в состояние static.

Пример настройки port-security в режиме lock.

Включить функцию защиты на интерфейсе:
console(config-if)# switchport port-security enable

Пример настройки максимального количества MAC адресов, которое может изучить порт:

Установить режим ограничения изучения максимального количества MAC-адресов:
console(config-if)# switchport port-security mode max-addresses

Задать максимальное количество адресов, которое может изучить порт, например, 10:
console(config-if)# switchport port-security mac-limit 10

Включить функцию защиты на интерфейсе:
console(config-if)# switchport port-security enable

show-команды:
show run
show mac-address-table

Источник:
docs.eltex-co.ru

[MES] Настройка Port-Channel на MES1400 MES2400
Устройство поддерживает два режима работы группы портов (port-channel) – статическая группа и группа, управляемая по протоколу LACP.

Рассмотрим настройку статических групп.

Необходимо выполнить следующее:

1) Включаем работу LAG глобально на коммутаторе:

console#configure terminal
console(config)#set port-channel enable

2) Активируем группу,в которую будем включать интерфейсы:

console(config)#interface port-channel 1
console(config-if)#no shutdown
console(config-if)#exit

3) Перейти в режим конфигурирования порта:

console(config)# interface GigabitEthernet0/1

4) Настроить статическую группу:

console(config-if)# channel-group 1 mode on , где

1 – Номер группы;

On – добавить порт в статическую группу.

Примечание: В port-channel можно добавлять порты только одного типа.

 

Рассмотрим настройку LACP-группы в режиме active.

В режиме active порты коммутатора являются инициаторами согласования по протоколу LACP. На встречной стороне порт должен быть настроен как в режиме active, так и в режиме passive.

Необходимо выполнить следующее:

1) Включаем работу LAG глобально на коммутаторе:

console#configure terminal
console(config)#set port-channel enable

2) Активируем группу,в которую будем включать интерфейсы:

console(config)#interface port-channel 2
console(config-if)#no shutdown
console(config-if)#exit

3) Перейти в режим конфигурирования порта:

console(config)# interface GigabitEthernet0/2

4) Настроить статическую группу:

console(config-if)# channel-group 2 mode active , где

2 – Номер группы;

active – добавить порт в статическую группу в режиме active.

 

Рассмотрим настройку LACP-группы в режиме passive.

В режиме passive порты коммутатора не являются инициаторами согласования по протоколу LACP, находится в режиме ожидания пакетов LACP со встречной стороны. На встречной стороне порт может быть настроен в режиме active, иначе соединение не установится.

Необходимо выполнить следующее:

1) Включаем работу LAG глобально на коммутаторе:

console#configure terminal
console(config)#set port-channel enable

2) Активируем группу,в которую будем включать интерфейсы:

console(config)#interface port-channel 3
console(config-if)#no shutdown
console(config-if)#exit

3) Перейти в режим конфигурирования порта:

console(config)# interface GigabitEthernet0/3

4) Настроить статическую группу:

console(config-if)# channel-group 3 mode passive , где

3 – Номер группы;

passive – добавить порт в статическую группу в режиме passive.

 

Примечание: начиная с версии 10.2.6 настройки:

console#configure terminal
console(config)#set port-channel enable
console(config)#interface port-channel 2
console(config-if)#no shutdown

будут включены по-умолчанию.

Источник:
docs.eltex-co.ru

[MES] Настройка Port-Channel на MES5312 MES5316A MES5324A MES5332A
Устройство поддерживает два режима работы группы портов (port-channel) – статическая группа и группа, управляемая по протоколу LACP.

Устройство поддерживает два режима работы группы портов (port-channel) – статическая группа и группа, управляемая по протоколу LACP.


Рассмотрим настройку статических групп.


Необходимо выполнить следующее:
1) Перейти в режим конфигурирования порта:

console(config)# interface TengigabitEthernet 1/0/2

2) Настроить статическую группу:

console(config-if)# channel-group 1 mode on

, где

1- Номер группы
On – добавить порт в статическую группу


Примечание: В port-channel можно добавлять порты только одного типа.

Рассмотрим настройку LACP-групп.


Необходимо выполнить следующее:
1) Перейти в режим конфигурирования порта:

console(config)# interface TengigabitEthernet 1/0/2

2) Настроить LACP-группу:

console(config-if)# channel-group 1 mode auto

, где

1- Номер группы
auto – добавить порт в LACP группу в режиме active.

Примечание: В зависимости от типа портов в группе (fastethernet/gigabitethernet/tengigabitethernet) рекомендуется предварительно настроить на соответствующем port-channel скорость. Т.е если в port-channel 1 будут порты tengigabitethernet, следовательно выполнить такую настройку на port-channel 1:


console(config-if)# interface Port-Channel 1
console(config-if)# speed 10000

Источник:
docs.eltex-co.ru

[MES] Настройка Port-Channel на MES5448 MES7048

Добавить порт в port-channel по LACP:

5448(Config)# interface 1/0/3
5448(Interface 1/0/2)# addport lag 1
5448(Interface 1/0/2)# interface lag 1
5448(Interface lag 1)# no port-channel static

Добавить порт в статический port-channel:

5448(Config)# interface 1/0/3
5448(Interface 1/0/2)# addport lag 1

Удаление порта из port-channel:
5448(Interface 1/0/2)# deleteport lag 1

 

Посмотреть настройки port-channel можно командами:

show port-channel brief

show port-channel <number lag>

 

Примечание:  В show running-config/show interfaces status  можно увидеть интерфейсы 0/3/1-0/3/x- это непосредственной интерфейсы lag, т.е lag 1 = 0/3/1, lag 2 = 0/3/2 и т.д.

Источник:
docs.eltex-co.ru

[MES] Настройка PPPoE MES1400 MES2400
Коммутаторы MES24xx, MES1428 поддерживают функцию PPPoE IA.

Функция PPPoE IA реализована в соответствии с требованиями документа DSL Forum TR-101 и предназначена для использования на коммутаторах, работающих на уровне доступа. Функция позволяет дополнять пакеты PPPoE Discovery информацией, характеризующей интерфейс доступа. Это необходимо для идентификации пользовательского интерфейса на сервере доступа (BRAS, Broadband Remote Access Server). Управление перехватом и обработкой пакетов PPPoE Active Discovery осуществляется глобально для всего устройства и выборочно для каждого интерфейса.

 

Пример настройки:

confgure terminal
pppoe-ia snooping
pppoe passthrough
!
dcs information option enable
!
vlan 10
pppoe-ia snooping
!
interface gigabitethernet 0/1
switchport general allowed vlan add 10 untagged
switchport general pvid 10
dcs agent-circuit-identifier "%v %p %h"
dcs remote-agent-identifier "%M"
!
interface gigabitethernet 0/2
switchport general allowed vlan add 10
port-security-state trusted
set port-role uplink
no shutdown

Порт gi0/2-uplink, gi0/1-downlink

Источник:
docs.eltex-co.ru

[MES] Настройка PVST
Настройка протокола PVST доступна для коммутаторов серий MES2300/3300/5300, начиная с версии ПО 4.0.10

Для включения протокола PVST необходимо использовать команду:

spanning-tree mode pvst

 

Для создания VLAN- участников PVST:

vlan database

vlan 2-64

 

Данные VLAN требуется добавить на интерфейсы:

interface gigabitethernet1/0/14

switchport mode trunk

switchport trunk allowed vlan add 2-64

 

Максимальное количество VLAN участников PVST - 64.

Источник:
docs.eltex-co.ru

[MES] Настройка QinQ
В сетях передачи данных довольно часто возникают задачи, связанные с подменой VLAN, добавлением дополнительной метки S-tag (транспортный vlan id) на основе С-tag (клиентский vlan id). На коммутаторах MES5448/MES7048 реализована такая возможность.

В сетях передачи данных довольно часто возникают задачи, связанные с подменой VLAN, добавлением дополнительной метки S-tag (транспортный vlan id) на основе С-tag (клиентский vlan id). На коммутаторах MES5448/MES7048 реализована такая возможность.

Рассмотрим настройку QinQ на примере.

С порта  interface 1/0/1 пакеты с vlan id 10-15 передаются в порт interface 1/0/9  без изменений.  Для vlan id 21 происходит подмена  метки на vlan id 31, для vlan id 22 на vlan id 32. Для vlan  id 23,24 добавляем вторую метку vlan id 25

 

Настройка функционала производится по следующему алгоритму

 

1) Определяем uni-p  и nni порты.

  NNI -  порты в сторону выше строящего оборудования. UNI - порты в сторону клиентов

console(Config)# dot1ad mode nni 1/0/9

console(Config)# dot1ad mode uni-p 1/0/1

 

2) Задаем сервис заданного типа  dot1ad service.  Формат команды dot1ad service service name  svid  svid   e–lan nni  port list

console(Config)# dot1ad service permit10 svid 10 e-lan nni 1/0/9

console(Config)# dot1ad service permit11 svid 11 e-lan nni 1/0/9

console(Config)# dot1ad service permit12 svid 12 e-lan nni 1/0/9

console(Config)# dot1ad service permit13 svid 13 e-lan nni 1/0/9

console(Config)# dot1ad service permit14 svid 14 e-lan nni 1/0/9

console(Config)# dot1ad service permit15 svid 15 e-lan nni 1/0/9

console(Config)# dot1ad service add25 svid 25 e-lan nni 1/0/9

console(Config)# dot1ad service change21 svid 31 e-lan nni 1/0/9

console(Config)# dot1ad service change22 svid 32 e-lan nni 1/0/9

 

3) При помощи subscribe происходит настройка соответствия   порта UNI и сервиса  dot1ad service.

- Для пропуска трафика  без изменений (vlan id 10-15) необходимо  добавить дублирующий идентификатор вилана  и затем убрать его (remove-ctag)

- Для перемаркировки vlan id (vlan id 21-22) добавляем дополнительный  идентификатор вилана s-tag (vlan id 31-32)  и удаляем с-tag

- Для добавления к c-tag (vlan id  23-24)  нужный s-tag (vlan id 25)

 

console(Config)# subscribe permit10 permit10-port match cvid 10 remove-ctag

console(Config)# subscribe permit11 permit11-port match cvid 11 remove-ctag

console(Config)# subscribe permit12 permit12-port match cvid 12 remove-ctag

console(Config)# subscribe permit13 permit13-port match cvid 13 remove-ctag

console(Config)# subscribe permit14 permit14-port match cvid 14 remove-ctag

console(Config)# subscribe permit15 permit15-port match cvid 15 remove-ctag

console(Config)# subscribe add25 add23-25 match cvid 23

console(Config)# subscribe add25 add24-25 match cvid 24

console(Config)# subscribe change21 change21-port match cvid 21 remove-ctag

console(Config)# subscribe change22 change22-port match cvid 22 remove-ctag

 

При выполнении указанных выше настроек итоговая конфигурация коммутатора примет вид

 

vlan database
vlan 10-40
exit


!
dot1ad mode nni 1/0/9
dot1ad mode uni-p 1/0/1
dot1ad service permit10 svid 10 e-lan nni 1/0/9
dot1ad service permit11 svid 11 e-lan nni 1/0/9
dot1ad service permit12 svid 12 e-lan nni 1/0/9
dot1ad service permit13 svid 13 e-lan nni 1/0/9
dot1ad service permit14 svid 14 e-lan nni 1/0/9
dot1ad service permit15 svid 15 e-lan nni 1/0/9
dot1ad service add25 svid 25 e-lan nni 1/0/9
dot1ad service change21 svid 31 e-lan nni 1/0/9
dot1ad service change22 svid 32 e-lan nni 1/0/9

interface 1/0/1
no shutdown
dot1ad mode uni-p
subscribe permit10 permit10-port match cvid 10 remove-ctag
subscribe permit11 permit11-port match cvid 11 remove-ctag
subscribe permit12 permit12-port match cvid 12 remove-ctag
subscribe permit13 permit13-port match cvid 13 remove-ctag
subscribe permit14 permit14-port match cvid 14 remove-ctag
subscribe permit15 permit15-port match cvid 15 remove-ctag
subscribe add25 add23-25 match cvid 23
subscribe add25 add24-25 match cvid 24
subscribe change21 change21-port match cvid 21 remove-ctag
subscribe change22 change22-port match cvid 22 remove-ctag
vlan acceptframe admituntaggedonly
vlan ingressfilter
vlan participation include 10-15,25,31-32
vlan tagging 10-15,25,31-32
exit

 

interface 1/0/9
no shutdown
dot1ad mode nni
vlan participation include 10-15,25,31-32
vlan tagging 10-15,25,31-32
mode dvlan-tunnel
exit

Источник:
docs.eltex-co.ru

[MES] Настройка RADIUS
Настройка аутентификации, авторизации производится следующим образом

Настройка аутентификации, авторизации производится следующим образом

aaa authentication login "radius" radius local
aaa authorization exec "radius" radius local
radius server host auth 10.0.0.1
radius server key auth 10.0.0.1
radius
line telnet
login authentication radius
authorization exec radius
exit

Устранение неполадок.

show running-config

show radius servers

show radius

Источник:
docs.eltex-co.ru

[MES] Настройка RADIUS-авторизации на MES1400 MES2400
Протокол RADIUS используется для аутентификации, авторизации и учета. Сервер RADIUS использует базу данных пользователей, которая содержит данные проверки подлинности для каждого пользователя. Таким образом, использование протокола RADIUS обеспечивает дополнительную защиту при доступе к ресурсам сети, а также при доступе к самому коммутатору.
  1. Для начала необходимо указать ip-адрес radius-сервера и указать key:

console(config)# radius-server host 192.168.2.1 key test

  1. Далее установить способ аутентификации для входа в систему по протоколу radius:

console(config)# aaa authentication login radius local

Примечание: На коммутаторах серии 1400 и 2400 используется алгоритм опроса метода аутентификации break (после неудачной аутентификации по первому методу процесс аутентификации останавливается). Начиная с версии 10.2.8 доступна настройка метода опроса аутентификации break/chain. Алгоритм работы метода chain - после неудачной попытки аутентификации по первому методу в списке следует попытка аутентификации по следующему методу в цепочке

  1. Установить способ аутентификации при повышении уровня привилегий:

console(config)# aaa authentication enable radius enable

Чтобы не потерять доступ до коммутатора (в случае недоступности radius-сервера), рекомендуется создать учетную запись в локальной базе данных, и задать пароль на привилегированный режим.

  1. Создать учетную запись:

console(config)# username test password test privilege 15

  1. Задать пароль на доступ в привилегированный режим:

console(config)# enable password test

Источник:
docs.eltex-co.ru

[MES] Настройка RADIUS-авторизации на MES5312, MES5316A, MES5324A, MES5332A
Протокол RADIUS используется для аутентификации, авторизации и учета. Сервер RADIUS использует базу данных пользователей, которая содержит данные проверки подлинности для каждого пользователя. Таким образом, использование протокола RADIUS обеспечивает дополнительную защиту при доступе к ресурсам сети, а также при доступе к самому коммутатору.

Протокол RADIUS используется для аутентификации, авторизации и учета. Сервер RADIUS использует базу данных пользователей, которая содержит данные проверки подлинности для каждого пользователя. Таким образом, использование протокола RADIUS обеспечивает дополнительную защиту при доступе к ресурсам сети, а также при доступе к самому коммутатору.

1.    Для начала необходимо указать ip-адрес radius-сервера и указать key:

console(config)# radius-server host 192.168.10.5 key test

2.    Далее установить способ аутентификации для входа в систему по протоколу radius:

console(config)# aaa authentication login authorization default radius local

3.    Установить способ аутентификации при повышении уровня привилегий:

console(config)# aaa authentication enable authorization default radius enable

Чтобы не потерять доступ до коммутатора (в случае  недоступности radius-сервера), рекомендуется создать учетную запись в локальной базе данных, и задать пароль на привилегированный режим.

4.    Создать учетную запись:

console(config)# username tester password eltex privilege 15

5.    Задать пароль на доступ в привилегированный режим:

console(config)# enable password eltex

Примечание:  По умолчанию используется проверка по локальной базе данных (aaa authentication login default local).

Источник:
docs.eltex-co.ru

[MES] Настройка radius-сервера на коммутаторах MES
Настройка radius-сервера доступна для коммутаторов серий MES2300/3300/5300. 

radius-сервер может использоваться для 802.1x аутентификации и для аутентификации учётных записей на других коммутаторах.

 

Включение radius-сервера:

radius server enable

 

Настройка адреса коммутатора доступа (клиента) и ключа:

encrypted radius server secret key secret ipv4-address 192.168.1.10

 

Конфигурация групп и привязка к ним уровней привилегий:

radius server group admin
vlan name test
privilege-level 15
exit
!
radius server group priv1
privilege-level 1
exit

Настройка логина и пароля для учётных записей, привязка их к группам:
radius server user username priv1 group priv1 password priv1
radius server user username tester group admin password tester

Источник:
docs.eltex-co.ru

[MES] Настройка RSPAN MES1400 MES2400
Оганизуем мониторинг трафика с портов GigabitEthernet 0/1, GigabitEthernet 0/2 на порт GigabitEthernet 0/3. К зеркалируемому трафику добавим vlan 200.

config ter

vlan 200

vlan active

exit

monitor session 1 source interface gigabitethernet 0/1

monitor session 1 source interface gigabitethernet 0/2

monitor session 1 destination remote vlan 200

monitor session 1 destination interface gigabitethernet 0/3

Источник:
docs.eltex-co.ru

[MES] Настройка Selective QinQ на MES1400 MES2400
Данная функция позволяет на основе сконфигурированных правил фильтрации по номерам внутренних VLAN (Customer VLAN) производить добавление внешнего SPVLAN (Service Provider’s VLAN), подменять Customer VLAN, а также запрещать прохождение трафика.

Рассмотрим несколько типовых примеров настройки SQinQ

 

1) Задача: пропустить vlan 31 без изменения, на остальные vlan, приходящие в порт 11 добавить метку 30. Конфигурация выглядит следующим образом:

interface gigabitethernet 0/11

switchport mode general

switchport general allowed vlan add 31

switchport general allowed vlan add 30 untagged

selective-qinq list ingress permit ingress-vlan 31

selective-qinq list ingress add-vlan 30

exit

!

interface gigabitethernet 0/12

switchport mode trunk

switchport trunk allowed vlan add 30-31

exit

 

2) Для vlan 68,456,905 добавить метку 3. Для vlan 234,324,657 добавить метку 4:

interface gigabitethernet 0/1

switchport mode general

switchport general allowed vlan add 3,4 untagged

selective-qinq list ingress add-vlan 3 ingress-vlan 68,456,905

selective-qinq list ingress add-vlan 4 ingress-vlan 234,324,657

exit

 

3) Для vlan 68,456,905 добавить метку 3. Остальной трафик отбросить.

interface gigabitethernet 0/2

switchport mode general

switchport general allowed vlan add 3,4 untagged

selective-qinq list ingress add-vlan 3 ingress-vlan 68,456,905

selective-qinq list ingress deny

exit

 

4) Для всего трафика приходящего на порт 15 добавить метку 30

interface gigabitethernet 0/15

switchport mode general

switchport general allowed vlan add 30 untagged

selective-qinq list ingress add_vlan 30

exit

 

или

interface gigabitethernet 0/15

switchport acceptable-frame-type untaggedAndPriorityTagged

switchport mode access

switchport access vlan 30

switchport dot1q tunnel

exit

 

5) Перемаркировка влан. Для входящего трафика vlan 856 -> vlan 3, vlan 68 -> vlan 4. Для исходящего трафика vlan 3 -> vlan 856, vlan 4 -> vlan 68

interface gigabitethernet 0/8

switchport mode general

switchport general allowed vlan add 3,4

selective-qinq list ingress override-vlan 3 ingress-vlan 856

selective-qinq list ingress override-vlan 4 ingress-vlan 68

selective-qinq list egress override-vlan 856 ingress-vlan 3

selective-qinq list egress override-vlan 68 ingress-vlan 4

exit

Источник:
docs.eltex-co.ru

[MES] Настройка Selective QinQ на MES5312 MES5316A MES5324A MES5332A
Данная функция позволяет на основе сконфигурированных правил фильтрации по номерам внутренних VLAN (Customer VLAN) производить добавление внешнего SPVLAN (Service Provider’s VLAN), подменять Customer VLAN, а также запрещать прохождение трафика.

Данная функция позволяет на основе сконфигурированных правил фильтрации по номерам внутренних VLAN (Customer VLAN) производить добавление внешнего SPVLAN (Service Provider’s VLAN), подменять Customer VLAN, а также запрещать прохождение трафика.

!!! Наличие хотя бы одного правила Selective Q-in-Q на интерфейсе запрещает включение функции логирования широковещательного шторма на этом интерфейсе.

Рассмотрим несколько типовых примеров настройки SQinQ

1) Задача: пропустить vlan 31 без изменения, на остальные vlan, приходящие в порт 11 добавить метку 30

interface gigabitethernet1/0/11
switchport mode general
switchport general allowed vlan add 31 tagged
switchport general allowed vlan add 30 untagged
selective-qinq list ingress permit ingress_vlan 31
selective-qinq list ingress add_vlan 30
exit
!
interface gigabitethernet1/0/12
switchport mode trunk
switchport trunk allowed vlan add 30-31
exit

2) Для vlan 68,456,905 добавить метку 3. Для vlan 234,324,657 добавить метку 4 

interface gigabitethernet 1/0/1
switchport mode general
switchport general allowed vlan add 3,4 untagged
selective-qinq list ingress add_vlan 3 ingress_vlan 68,456,905
selective-qinq list ingress add_vlan 4 ingress_vlan 234,324,657
exit

3) Перемаркировка влан. Для входящего трафика vlan 856 -> vlan 3, vlan 68 -> vlan 4. Для исходящего трафика vlan 3 -> vlan 856, vlan 4 -> vlan 68

interface gigabitethernet 1/0/8
switchport mode general
switchport general allowed vlan add 3,4 tagged
selective-qinq list ingress override_vlan 3 ingress_vlan 856
selective-qinq list ingress override_vlan 4 ingress_vlan 68
selective-qinq list egress override_vlan 856 ingress_vlan 3
selective-qinq list egress override_vlan 68 ingress_vlan 4
exit

4) Для всего трафика приходящего на порт 11 добавить метку 30

interface gigabitethernet1/0/11
switchport mode general
switchport general allowed vlan add 30 untagged
selective-qinq list ingress add_vlan 30
exit

или

interface gigabitethernet 1/0/11 
switchport mode customer
switchport customer vlan 30
exit

Источник:
docs.eltex-co.ru

[MES] Настройка Serviceport (OOB) на MES5448 MES7048
На MES5448 и MES7048 в качестве OOB-порта используется Serviceport, расположенный на задней панели устройства.

На MES5448/MES7048 в качестве OOB-порта используется Serviceport, расположенный на задней панели устройства. 

 

1)Настройка статического IPv4-адреса

console# serviceport protocol none

console# serviceport ip 10.10.10.2 255.255.255.0 10.10.10.1

2)Настройка получения адреса по DHCP

console# serviceport protocol dhcp

 

Просмотр настроек порта:

console# show serviceport

Interface Status............................... Up
IP Address..................................... 0.0.0.0
Subnet Mask.................................... 0.0.0.0
Default Gateway................................ 0.0.0.0
IPv6 Administrative Mode....................... Enabled
IPv6 Prefix is ................................ fe80::e2d9:e3ff:fed6:9681/64
Configured IPv4 Protocol....................... DHCP
Configured IPv6 Protocol....................... None
IPv6 AutoConfig Mode........................... Disabled
Burned In MAC Address.......................... E0:D9:E3:D6:96:81

 

Примечание: Работа OOB-портов  в стеке устройств. Настройки Serviceport переходят между юнитами стека. MAC-IP у них один и тот же, но в UP только порт на текущем master-юните, поэтому нужно подключать патчкорды в оба порта OOB на обоих юнитах стека (master и backup).

 

Источник:
docs.eltex-co.ru

[MES] Настройка SNTP MES5448 MES7048
На коммутаторах 5448/7048 поддерживается SNTP-клиент для синхронизации времени. Функционала SNTP-сервера на устройстве нет. Пример настройки синхронизации

Указать режим работы клиента

(config)# sntp client mode unicast

Команда задает интервал опроса одноадресного клиента SNTP:

(config)# sntp unicast client poll-retry 10

Задать адрес сервера

(config)# sntp server "192.168.1.1"

Указать временную зону

(config)# clock timezone 3 minutes 0

Источник:
docs.eltex-co.ru

[MES] Настройка SNTP на MES1400 MES2400
Включить источник времени sntp: clock time source ntp

Настроить sntp-клиента для сервера 192.168.1.1:

 

Sntp
set sntp client enabled
set sntp client addressing-mode unicast
set sntp unicast-server ipv4 192.168.10.5

 

Вручную установить параметры:

  1. Часовой пояс:

set sntp client time-zone +07:00

2.Формат отображения часов (hh:mm/ampm):

set sntp client clock-format ampm

------------------------------------------------------------------

Show-команды:
show clock
show sntp clock
show sntp status
show sntp statistics

Источник:
docs.eltex-co.ru

[MES] Настройка SNTP на MES5312 MES5316A MES5324A MES5332A
Команды для настроек SNTP для MES5312 MES5316A MES5324A MES5332A

Настройка синхронизации времени производится следующими командами:

console(config)# clock source sntp

console(config)# sntp unicast client enable

console(config)# sntp unicast client poll

console(config)# sntp server 91.226.136.136 poll

 

Настройка синхронизации времени с аутентификацией:

console(config)# clock source sntp

console(config)# encrypted sntp authentication-key 1 md5 v3NgLjCb1JzsRzsi3NoK0m7mOIi/wjnrsMvFoJhOGMk=

console(config)# sntp trusted-key 1

console(config)# sntp authenticate

console(config)# sntp unicast client enable

console(config)# sntp unicast client poll

console(config)# sntp server 192.168.10.5 poll key 1

Источник:
docs.eltex-co.ru

[MES] Настройка SSH-авторизации по ключам на MES5312 MES5316A MES5324A MES5332A
На коммутаторах MES есть возможность настроить ssh-авторизацию по ключам, помимо  подключения по логину/паролю. Ниже представлены примеры настройки для серий MES5312/5316A/5324A/5332A.

На коммутаторах MES есть возможность настроить ssh-авторизацию по ключам, помимо  подключения по логину/паролю. Ниже представлены примеры настройки для серий MES5312/5316A/5324A/5332A.

Пример настройки для MES5312/5316A/5324A/5332A:

username tester password encrypted ab4d8d2a5f480a137067da17100271cd176607a1 privilege 15

ip ssh server
ip ssh pubkey-auth auto-login
crypto key pubkey-chain ssh
user-key tester rsa
key-string row AAAAB3NzaC1yc2EAAAADAQABAAAAgQD0rxRFG2cN
key-string row uHv0Q93p1cVfghC/wNtNvVPkE99t7Doq2tYozTh2
key-string row xxJCiGtCuvn+5ipKyVKWua//bRA33M8Zvl2+93jG
key-string row WYb3aR2p01AfalsyNyz9+230Ld86YcUF
key-string row 0aobdk61tPcjdAKQhqQGfc5/yO7JiBMvLOmIpGH/
key-string row 3Nl5nv+kRQ==
exit
exit

 

Обращаю внимание, что необходимо создать пользователя.  Ключ (user-key) привязывается к созданному пользователю (tester). Соответсвенно имена должны быть идентичны.  По умолчанию создан пользователь admin. Можно создать user-key относительно дефолтного пользователя.

PC@pc-VirtualBox:~/.ssh$ ssh tester@192.168.10.89

console#   sh ip ssh
SSH Server enabled. Port: 22
RSA key was generated.
DSA(DSS) key was generated.

SSH Public Key Authentication is enabled with auto-login.
SSH Password Authentication is enabled.

Active incoming sessions:

IP address         SSH username    Version    Cipher      Auth Code
----------------- -------------- ----------- ----------- --------------
192.168.10.68       tester       SSH-2.0-Ope aes128-cbc   hmac-sha1
nSSH_7.2p2
Ubuntu-4ubu
ntu2.2

 

Источник:
docs.eltex-co.ru

[MES] Настройка Syslog и SNMP trap по событию Dying Gasp для MES1400 MES2400
Технология "Dying gasp" позволяет проинформировать администратора сети при отключении питания от коммутатора через отправку syslog сообщения или snmp-trap, а также с помощью пакетов ethernet OAM.

Если коммутатор аппаратно поддерживает технологию "Dying gasp", то есть возможность настроить отправку сообщения по протоколу syslog или snmp trap в момент отключения электропитания от устройства.

Информация о том, какие устройства аппаратно поддерживают Dying gasp, можно найти в "Руководстве пользователя" в таблице 9 – Основные технические характеристики.

 

1) Настраиваем SYSLOG сервер на устройстве. В примере используется настройка для local 0, severity от 1 до 7

console(config)# logging-server 128 ipv4 192.168.2.2
console(config)# logging-server 129 ipv4 192.168.2.2
console(config)# logging-server 130 ipv4 192.168.2.2
console(config)# logging-server 131 ipv4 192.168.2.2
console(config)# logging-server 132 ipv4 192.168.2.2
console(config)# logging-server 133 ipv4 192.168.2.2
console(config)# logging-server 134 ipv4 192.168.2.2
console(config)# logging-server 135 ipv4 192.168.2.2

 

2) Настраиваем отправку SNMP trap. Community private, сервер 192.168.2.2

console(config)# snmp user SimpleUser
console(config)# snmp community index 1 name private security SimpleUser
console(config)# snmp group SimpleGroup user SimpleUser security-model v2c
console(config)# snmp access SimpleGroup v2c read iso write iso notify iso
console(config)# snmp view iso 1 included
console(config)# snmp targetaddr SimpleHost param SimpleParams 192.168.2.2 taglist SimpleTag
console(config)# snmp targetparams SimpleParams user SimpleUser security-model v2c message-processing v2c
console(config)# snmp notify SimpleNotify tag SimpleTag type Trap

 

3) Для отправки информации по Dying gasp необходимо обязательно настроить OAM на порту

console(config)# set ethernet-oam enable
console(config)# interface gigabitethernet 0/2
console(config-if)# ethernet-oam enable

Источник:
docs.eltex-co.ru

[MES] Настройка TACACS на коммутаторах MES
Протокол TACACS+ обеспечивает централизованную систему безопасности для проверки пользователей, получающих доступ к устройству, при этом поддерживая совместимость с RADIUS и другими процессами проверки подлинности.

Конфигурацию будем выполнять на базе коммутатора MES2324.

1.    Для начала необходимо указать ip-адрес tacacs-сервера и указать key:

MES2324B(config)#tacacs-server host 192.168.10.5 key secret

2.    Далее установить способ аутентификации для входа в систему по протоколу tacacs+:

MES2324B(config)#aaa authentication login authorization default tacacs local

Примечение: На коммутаторах серии 23xx, 33xx, 53xx используется алгоритм опроса метода аутентификации break (после неудачной аутентификации по первому методу процесс аутентификации останавливается). Начиная с версии 4.0.6 доступна настройка метода опроса аутентификации break/chain. Алгоритм работы метода chain - после неудачной попытки аутентификации по первому методу в списке следует попытка аутентификации по следующему методу в цепочке. На коммутаторах серии 1000, 2000, 3000 уже имеется этот функционал.

3.    Установить способ аутентификации при повышении уровня привилегий:

MES2324B(config)#aaa authentication enable authorization default tacacs enable

Чтобы не потерять доступ до коммутатора (в случае  недоступности radius-сервера), рекомендуется создать учетную запись в локальной базе данных, и задать пароль на привилегированный режим.

4.    Создать учетную запись:


MES2324B(config)#username tester password eltex privilege 15

5.    Задать пароль на доступ в привилегированный режим:

MES2324B(config)#enable password eltex

6.  Разрешить ведение учета (аккаунта) для сессий управления.

MES2324B(config)#aaa accounting login start-stop group tacacs+

7.  Включить ведение учета введенных в CLI команд по протоколу tacacs+.

MES2324B(config)#aaa accounting commands stop-only group tacacs+

Примечание: По умолчанию используется проверка по локальной базе данных (aaa authentication login default local).

Источник:
docs.eltex-co.ru

[MES] Настройка TACACS-авторизации на MES1400 MES2400
Протокол TACACS+ обеспечивает централизованную систему безопасности для проверки пользователей, получающих доступ к устройству.
  1. Для начала необходимо указать ip-адрес tacacs-сервера и указать key:

console(config)# tacacs-server host 192.168.2.1 key secret

  1. Далее установить способ аутентификации для входа в систему по протоколу tacacs+:

console(config)# aaa authentication login tacacs local

Примечание: На коммутаторах серии 1400 и 2400 используется алгоритм опроса метода аутентификации break (после неудачной аутентификации по первому методу процесс аутентификации останавливается). Начиная с версии 10.2.8 доступна настройка метода опроса аутентификации break/chain. Алгоритм работы метода chain - после неудачной попытки аутентификации по первому методу в списке следует попытка аутентификации по следующему методу в цепочке

  1. Установить способ аутентификации при повышении уровня привилегий:

console(config)# aaa authentication enable tacacs local

Чтобы не потерять доступ до коммутатора (в случае недоступности radius-сервера), рекомендуется создать учетную запись в локальной базе данных, и задать пароль на привилегированный режим.

  1. Создать учетную запись:

console(config)# username test password test privilege 15

  1. Задать пароль на доступ в привилегированный режим:

console(config)# enable password test

Источник:
docs.eltex-co.ru

[MES] Настройка TACACS+ на MES5448 MES7048
Настройка выполняется следующим образом.

aaa authentication login "tacacs" tacacs local
aaa authorization exec "tacacs" tacacs local
line ssh
login authentication tacacs
authorization exec tacacs
exit
tacacs-server host "10.0.0.1"
key “tacacs”

Можно настроить более 2х серверов.

Устранение неполадок:

show run
show tacacs

Источник:
docs.eltex-co.ru

[MES] Настройка Voice VLAN на MES5312 MES5316A MES5324A MES5332A
Voice VLAN используется для выделения VoIP-оборудования в отдельную VLAN. Для VoIP-фреймов могут быть назначены QoS-атрибуты для приоритезации трафика. Классификация фреймов, относящихся к фреймам VoIP-оборудования, базируется на OUI ( Organizationally Unique Identifier – первые 24 бита MAC-адреса) отправителя.

Источник:
docs.eltex-co.ru

[MES] Настройка VRRP на MES5448 MES7048
Протокол VRRP предназначен для резервирования маршрутизаторов, выполняющих роль шлюза по умолчанию. Это достигается путём объединения IP-интерфейсов группы маршрутизаторов в один виртуальный, который будет использоваться как шлюз по умолчанию для компьютеров в сети.

Протокол VRRP предназначен для резервирования маршрутизаторов, выполняющих роль шлюза по умолчанию. Это достигается путём объединения IP-интерфейсов группы маршрутизаторов в один виртуальный, который будет использоваться как шлюз по умолчанию для компьютеров в сети.

Настройки коммутаторов:


SW1:


vlan database
vlan 10
exit

no spanning-tree
ip routing

interface 1/0/1
no shutdown
switchport mode access
switchport access vlan 10
exit

interface 1/0/2-1/0/3
no shutdown
spanning-tree bpdufilter
switchport mode trunk
switchport trunk allowed vlan remove 1
exit


SW2:


vlan database
vlan 10,20
vlan routing 10 1
vlan routing 20 2
exit

 

no spanning-tree
ip routing

interface 1/0/1
no shutdown
spanning-tree bpdufilter
switchport mode trunk
switchport trunk allowed vlan remove 1
exit

interface 1/0/2
no shutdown
spanning-tree bpdufilter
switchport mode trunk
switchport trunk allowed vlan remove 1
exit

Ip vrrp
interface vlan 10
no shutdown
routing
ip address 10.10.10.1 255.255.255.0
ip vrrp 1
ip vrrp 1 mode
ip vrrp 1 ip 10.10.10.1
exit

interface vlan 20
no shutdown
routing
ip address 20.20.20.1 255.255.255.0
ip vrrp 2
ip vrrp 2 mode
ip vrrp 2 ip 20.20.20.1
exit


SW3:


vlan database
vlan 10,20
vlan routing 10 1
vlan routing 20 2
exit

no spanning-tree
ip routing

interface 1/0/1
no shutdown
spanning-tree bpdufilter
switchport mode trunk
switchport trunk allowed vlan remove 1
exit

interface 1/0/2
no shutdown
spanning-tree bpdufilter
switchport mode trunk
switchport trunk allowed vlan remove 1
exit

ip vrrp
interface vlan 10
no shutdown
routing
ip address 10.10.10.2 255.255.255.0
ip vrrp 1
ip vrrp 1 mode
ip vrrp 1 ip 10.10.10.1
exit
!
interface vlan 20
no shutdown
routing
ip address 20.20.20.2 255.255.255.0
ip vrrp 2
ip vrrp 2 mode
ip vrrp 2 ip 20.20.20.1
exit


SW4:


vlan database
vlan 20
exit

no spanning-tree
ip routing

interface 1/0/1
no shutdown
switchport mode access
switchport access vlan 20
exit

interface 1/0/2-1/0/3
no shutdown
spanning-tree bpdufilter
switchport mode trunk
switchport trunk allowed vlan remove 1
exit

 

Диагностика протокола VRRP

show ip vrrp interface brief

Источник:
docs.eltex-co.ru

[MES] Настройка VRRP на коммутаторах MES
Протокол VRRP предназначен для резервирования маршрутизаторов, выполняющих роль шлюза по умолчанию. Это достигается путём объединения IP-интерфейсов группы маршрутизаторов в один виртуальный, который будет использоваться как шлюз по умолчанию для компьютеров в сети.

sw1, sw2 – два любых коммутатора пропускающих трафик прозрачно, использовались MES2124
R1, R2 — коммутаторы MES2324 с настроенным VRRP, 
R1 — Master
R2 — Backup

Со стороны PC1 сеть VLAN 100
Cо стороны PC2 сеть VLAN 200

–---------------------------------------Настройки мастера (R1):------------------------------------------------

Отключение протокола STP:
R1(config)#no spanning-tree

1) Настройка интерфейса VLAN 200
     а) Настройка IP-адреса интерфейса VLAN 200 для подсети 10.0.200.0 /24:

    R1(config)#int vlan 200
    R1(config-if)#ip address 10.0.200.1 255.255.255.0

    б) Определение VRID (=1), IP-адреса, который будет использоваться в качестве шлюза по умолчанию виртуального маршрутизатора для подсети 10.0.200.0 /24

    R1(config-if)#vrrp 1 ip 10.0.200.1

ПримечаниеVRRP-маршрутизатор всегда будет становиться Master, если он владелец IP-адреса, который присвоен виртуальному маршрутизатору

    в) Включение VRRP протокола на данном интерфейсе (по умолчанию выключен)

    R1(config-if)#no vrrp 1 shutdown

    г) Определение интервала между анонсами master-маршрутизатора (влияет на время сходимости при выходе из строя мастера).

    R1(config-if)#vrrp 1 timers advertise msec 50

Примечание: Если интервал задан в миллисекундах, то происходит округление вниз до ближайшей секунды для VRRP Version 2 и до ближайших сотых долей секунды (10 миллисекунд) для VRRP Version 3.

2) Настройка интерфейса gigabitethernet 1/1/23

    R1(config)#int gigabitethernet 1/1/23
    R1(config-if)#switchport mode trunk 
    R1(config-if)#switchport trunk allowed vlan add 200

3) Настройка интерфейса VLAN 100 

    a) Настройка IP-адреса интерфеса для подсети 10.0.100.0 /24

    R1(config)#int vlan 100
    R1(config-if)#ip address 10.0.100.1 255.255.255.0

    б) Определение VRID VRRP (=1), IP-адреса, который будет использоваться в качестве шлюза по умолчанию виртуального маршрутизатора для подсети 10.0.100.0 /24

    R1(config-if)#vrrp 1 ip 10.0.100.1

Примечание: R2 становится Backup-маршрутизатором и не выполняет функции маршрутизации трафика до выхода из строя Master.

    в) Включение VRRP протокола на данном интерфейсе (по умолчанию выключен)

    R1(config-if)#no vrrp 1 shutdown

    г) Определение интервала между анонсами master-маршрутизатора (влияет на время сходимости при выходе из строя мастера).

    R1(config-if)#vrrp 1 timers advertise msec 50

4) Настройка интерфейса gigabitethernet 1/1/24

R1(config)#int gigabitethernet 1/1/24
R1(config-if)#switchport mode trunk 
R1(config-if)#switchport trunk allowed vlan add 100

 

 

–-------------------------------------------Настройки Backup (R2):---------------------------------------------

Отключение протокола STP:
R1(config)#no spanning-tree

1) Настройка интерфейса VLAN 200:
     а) Настройка IP-адреса интерфейса для подсети 10.0.200.0 /24:

    R1(config)#int vlan 200
    R1(config-if)#ip address 10.0.200.2 255.255.255.0

    б) Определение ID VRRP (=1), IP-адреса, который будет использоваться в качестве шлюза по умолчанию виртуального маршрутизатора для подсети 10.0.200.0 /24,

    R1(config-if)#vrrp 1 ip 10.0.200.1

    в) Включение VRRP протокола на данном интерфейсе (по умолчанию выключен)

    R1(config-if)#no vrrp 1 shutdown

    г) Определение интервала между анонсами master-маршрутизатора (влияет на время сходимости при выходе из строя мастера).

    R1(config-if)#vrrp 1 timers advertise msec 50

2) Настройка интерфейса gigabitethernet 1/1/23

    R1(config)#int gigabitethernet 1/1/23
    R1(config-if)#switchport mode trunk 
    R1(config-if)#switchport trunk allowed vlan add 200

3) Настройка интерфейса VLAN 100:
     a) Настройка IP-адреса интерфеса для подсети 10.0.100.0 /24

    R1(config)#int vlan 200
    R1(config-if)#ip address 10.0.100.2 255.255.255.0

    б) Определение VRID VRRP (=1), IP-адреса, который будет использоваться в качестве шлюза по умолчанию VRRP-маршрутизатора для подсети 10.0.100.0 /24
    R1(config-if)#vrrp 1 ip 10.0.100.1

    в) no vrrp 1 shutdown
     г) vrrp 1 timers advertise msec 50

4) Настройка интерфейса gigabitethernet 1/1/24

    R1(config)#int gigabitethernet 1/1/24
    R1(config-if)#switchport mode trunk 
    R1(config-if)#switchport trunk allowed vlan add 100

Примечание: На коммутаторах SW1 и SW2 также необходимо настроить порты gi23 и gi24 в режим trunk для своих VLAN, а порт gi1 в режим access для своих VLAN.

После настройки R1 и R2 при выходе из строя R1 мастером становится R2 и работает как шлюз по умолчанию с виртуальным IP-адресом 10.0.100.1 для сети 10.0.100.0 /24 и 10.0.200.1 для сети 10.0.200.0 /24
При возвращении R1 он снова становится мастером.

Примечание: На канальном уровне резервируемые интерфейсы имеют MAC-адрес 00:00:5E:00:01:XX, где XX – номер группы VRRP (VRID)

Источник:
docs.eltex-co.ru

[MES] Настройка авторизации вводимых команд через Tacacs+ на MES1400 MES2400
Данный функционал позволяет запускать авторизацию для каждой вводимой пользователем команды на Tacacs+-сервере.

Пример конфигурации:

1.Добавить Tacacs-сервер, задать ключ и выбрать тип ASCII

console(config)# tacacs-server host 192.168.11.2 key secret
console(config)# tacacs-server authentication type ascii

 

2.Включить авторизацию вводимых команд на сервере Tacacs+:

console(config)# aaa authorization command 1 tacacs
console(config)# aaa authorization command 7 tacacs
console(config)# aaa authorization command 15 tacacs

 

В данном примере авторизация команд настраивается для всех трех уровней привилегий.

В случае недоступности Tacacs-сервера авторизация команд прекращается - будут недоступны все команды.

Если добавить метод local:

console(config)# aaa authorization command 1 tacacs local
console(config)# aaa authorization command 7 tacacs local
console(config)# aaa authorization command 15 tacacs local

То в случае недоступности сервера все команды будут доступны без авторизации.

Источник:
docs.eltex-co.ru

[MES] Настройка балансировки Port-Channel на MES5312 MES5316A MES5324A MES5332A
Настройка балансировки Port-Channel двумя алгоритмами.

На коммутаторе MES можно выбрать следующие алгоритмы балансировки:

  • src-dst-mac-ip — балансировка основана на MAC адресе источника, MAC адресе назначения, IP адресе источника и IP адресе назначения.

  • src-dst-mac — режим по умолчанию, балансировка основана на MAC адресе источника, MAC адресе назначения

Алгоритм балансировки выбирается командой:

 console(config)# Port-Channel load-balance

 

Алгоритм работы балансировки src-dst-mac-ip

IP source address (c 0 по 5 бит) операция XOR IP source address (c 16 по 21 бит) операция XOR IP destination address (с 0 по 5 бит) операция XOR IP destination address (c 16 по 21 бит) операция XOR source MAC (с 0 по 5 бит) операция XOR destination MAC (с 0 по 5 бит) получаем HASH. Над HASH выполняем операцию MOD X (x - кол-во портов в LAG). Получаем Index порта в LAG.

Алгоритм работы балансировки src-dst-mac:

source MAC (с 0 по 5 бит) операция XOR destination MAC (с 0 по 5 бит) получаем HASH. Над HASH выполняем операцию MOD х (x - кол-во портов в LAG). Получаем Index порта в LAG.

Источник:
docs.eltex-co.ru

[MES] Настройка защиты от петель (LBD) на MES1400 MES2400
Данный механизм позволяет коммутатору обнаруживать закольцованные интерфейсы. Петля на порту обнаруживается путём отсылки коммутатором фрейма с широковещательным адресом назначения.

Защита от петель глобально включается командой:

console(config)# loopback-detection enable

 

Также функционал необходимо включить на физическом интерфейсе командой:

console(config-if)# loopback-detection enable

 

Интервал между отправкой lbd-фреймов настраивается командой:

console(config)# loopback-detection interval <1..60>

 

По умолчанию интервал отправки равен 30 секундам.

 

Для автоматического восстановления интерфейса из состояния errdisable требуется выполнить команду:

console(config)# errdisable recovery cause loopback-detection

Источник:
docs.eltex-co.ru

[MES] Настройка защиты от петель (LBD) на MES5312 MES5316A MES5324A MES5332A
Данный механизм позволяет устройству отслеживать закольцованные порты. Петля на порту обнаруживается путём отсылки коммутатором фрейма с адресом назначения, совпадающим с одним из MAC-адресов устройства.

Данный механизм позволяет устройству отслеживать закольцованные порты. Петля на порту обнаруживается путём отсылки коммутатором фрейма с адресом назначения, совпадающим с одним из MAC-адресов устройства.

настройка loopbackdetection возможна как на порту, так и в VLAN

Пример конфигурирования при настройке на порту

Настройка позволяет защитить коммутатор от петли между портами коммутатора

  • Включить механизм обнаружения петель глобально для коммутатора:

console(config)# loopback-detection enable

  • Включить механизм обнаружения петель на портах:

console(config)# interface range GigabitEthernet1/0/1-24

console (config-if-range)# loopback-detection enable

Источник:
docs.eltex-co.ru

[MES] Настройка защиты от широковещательного шторма на MES1400 MES2400
Шторм возникает вследствие чрезмерного количества broadcast, multicast, unknown unicast пакетов, одновременно передаваемых по сети через один порт, что приводит к перегрузке ресурсов сети и появлению задержек. Шторм может возникнуть при наличии «закольцованных» сегментов в сети Ethernet.

Коммутатор измеряет скорость принимаемого broadcast, multicast, unknown unicast трафика для портов с включенным контролем «шторма» и отбрасывает пакеты, если скорость превышает заданное максимальное значение.

Контроль шторма настраивается на физических интерфейсах и является рекомендованной настройкой при конфигурировании клиентских портов на коммутаторах уровня доступа.

 

Для настройки storm-control необходимо глобально определить режим работы функционала:

console(config)# storm-control mode {kbps | pps}

По умолчанию работает режим pps.

 

Для настройки контроля шторма на интерфейсе используется команда:

console(config-if)# storm-control <traffic-type> level {kbps/pps}, где

<traffic-type> - тип трафика: broadcast/multicast/unknown unicast;

Kbps – лимит обработки трафика, измеряется в килобитах в секунду;

pps – лимит обработки трафика, измеряется в пакетах в секунду;

 

Для перевода интерфейса в errdisable при обнаружении шторма используется команда:

console(config-if)# storm-control <traffic-type> action {shutdown}, где

{shutdown} - опциональный параметр, переводящий интерфейс в состояние errdisable при превышении порога.

Источник:
docs.eltex-co.ru

[MES] Настройка защиты от широковещательного шторма на MES5312 MES5316A MES5324A MES5332A
Широковещательный шторм – это размножение широковещательных сообщений в каждом узле, которое приводит к лавинообразному росту их числа и парализует работу сети. Коммутаторы MES имеют функцию, позволяющую ограничить скорость передачи широковещательных кадров, принятых коммутатором.

Широковещательный шторм – это размножение широковещательных сообщений в каждом узле, которое приводит к лавинообразному росту их числа и парализует работу сети. Коммутаторы MES имеют функцию, позволяющую ограничить скорость передачи широковещательных кадров, принятых коммутатором.

Пример настройки.

Перейти в режим конфигурирования интерфейса .

Включить функцию. Ограничения настраиваются либо при помощи указания полосы пропускания в kbps, либо в процентах от полосы пропуская - level

console(config)# interface tengigabitethernet 1/0/1

console(config-if)# storm-control broadcast level 2

console(config-if)# storm-control broadcast kbps 8500

Источник:
docs.eltex-co.ru

[MES] Настройка зеркалирования SPAN на коммутаторах MES1400 MES2400
Функция зеркалирования портов предназначена для контроля сетевого трафика путем пересылки копий входящих и/или исходящих пакетов с одного или нескольких контролируемых портов на один контролирующий порт.

При зеркалировании более одного физического интерфейса возможны потери трафика. Отсутствие потерь гарантируется только при зеркалировании одного физического интерфейса.

Существует возможность настроить до 4-х сессий зеркалирования.

К контролирующему порту применяются следующие ограничения:

  • Порт не может быть контролирующим и контролируемым портом одновременно;
  • IP-интерфейс должен отсутствовать для этого порта;

К контролируемым портам применяются следующие ограничения:

  • Порт не может быть контролирующим и контролируемым портом одновременно.

Пример настройки SPAN:

Оганизуем мониторинг трафика с портов GigabitEthernet 0/1, GigabitEthernet 0/2 на порт GigabitEthernet 0/3.

console(config)#monitor session 1 source interface gigabitethernet 0/1

console(config)#monitor session 1 source interface gigabitethernet 0/2

console(config)#monitor session 1 destination interface gigabitethernet 0/3

В выводе команды show monitor session X, где Х - это номер сессии можно просмотреть информацию по контролирующим и контролируемым портам:

 

console#show monitor session 1

Mirroring is globally Enabled.

Session : 1

-------

Source Ports

Rx : None

Tx : None

Both : Gi0/1,Gi0/2

Destination Ports : Gi0/3

Session Status : Active

Rspan Disabled

Источник:
docs.eltex-co.ru

[MES] Настройка и работа системного журнала Syslog MES1400 MES2400
Видео по настройке и работе системного журнала Syslog для MES1400 MES2400

Источник:
docs.eltex-co.ru

[MES] Настройка изоляции портов (protected-port) на MES1400 MES2400
Для того, чтобы пользователи, подключенные к разным портам коммутатора, не могли обмениваться трафиком между собой необходимо воспользоваться функцией изоляция портов.

Данная функция позволяет изолировать группу портов (в пределах одного коммутатора), находящихся в одном широковещательном домене между собой, позволяя при этом обмен трафиком с другими портами, находящимися в этом же широковещательном домене, но не принадлежащими к этой группе.

Например, необходимо на MES2428 изолировать порты Gigabit Ethernet 0/1 и Gigabit Ethernet 0/2.

Для этого нужно включить функцию на данных портах:

console# configure
console(config)# interface range GigabitEthernet 0/1-2
console(config-if-range)# switchport protected

 

Также возможно разрешить обмен трафиком только между определенными портами.

Например, необходимо разрешить прохождение трафика между Gi0/3 и Gi0/4, при этом с другими портами данные порты не смогут обмениваться трафиком:

console(config)# interface GigabitEthernet 0/3
console(config-if)# port-isolation gi 0/4

 

Для того, чтобы в данную группу добавить еще один порт, необходимо воспользоваться опцией "add", иначе текущая группа затрётся:

console(config-if)# port-isolation add gi 0/5

 

Получаем:

interface gigabitethernet 0/3
port-isolation add gi 0/4-5

Источник:
docs.eltex-co.ru

[MES] Настройка изоляции портов (protected-port) на MES5312 MES5316A MES5324A MES5332A
Для того, чтобы пользователи, подключенные к разным портам коммутатора, не могли обмениваться трафиком между собой необходимо воспользоваться функцией изоляция портов.

Источник:
docs.eltex-co.ru

[MES] Настройка ограничений для мультикаст групп (ip mcast profile) MES1400 MES2400
Для ограничения просмотра мультикаст групп за портами абонентов можно использовать функционал ip mcast profile.

Пример настройки

gigabitethernet 0/1 - абонентский порт
gigabitethernet 0/25 - аплинк порт
vlan 10 – мультикаст
vlan 19 -  данные

 

Активируем ip igmp snooping и функцию фильтрации

console(config)# ip igmp snooping
console(config)# ip igmp snooping filter

 

Создаем ip mcast profile

console(config)#ip mcast profile 2
console(config-profile)# permit
console(config-profile)# range 225.0.0.1 225.0.0.3
console(config-profile)# profile active

 

Настроить режим обработки мультикаст трафика ip

console(config)# snooping multicast-forwarding-mode ip

 

Включаем ip igmp snooping для vlan. Активируем фильтрацию незарегестрированного мультикаста

console(config)# vlan 10
console(config-vlan)# ip igmp snooping
console(config-vlan)# ip igmp snooping sparse-mode enable

 

Выполняем настройки на портах

console(config)# interface gigabitethernet 0/1
console(config-if)# switchport general allowed vlan add 10,19
console(config-if)# ip igmp snooping filter-profileId 2
console(config-if)# no shutdown

 

console(config)# interface gigabitethernet 0/25
console(config-if)# switchport mode trunk
console(config-if)# no shutdown

Источник:
docs.eltex-co.ru

[MES] Настройка ограничений количества мультикаст групп на порту (IGMP Snooping limit groups) MES1400 MES2400
Для настройки ограничения по количеству групп на порту используется команды

Пример настройки

gigabitethernet 0/1 - абонентский порт
gigabitethernet 0/25 - аплинк порт
vlan 10 – мультикаст
vlan 19 -  данные

Активируем ip igmp snooping и функцию фильтрации

console(config)# ip igmp snooping
console(config)# ip igmp snooping filter

Включаем ip igmp snooping для vlan. Активируем фильтрацию незарегестрированного мультикаста

console(config)# vlan 10
console(config-vlan)# ip igmp snooping
console(config-vlan)# ip igmp snooping sparse-mode enable

Выполняем настройки на портах. Ограничиваем максимальное количество мультикаст групп за портом gigabitethernet 0/1 до 5

console(config)# interface gigabitethernet 0/1
console(config-if)# switchport general allowed vlan add 10,19
console(config-if)# ip igmp snooping limit groups 5
console(config)# interface gigabitethernet 0/25
console(config-if)# switchport mode trunk
console(config-if)# no shutdown

Источник:
docs.eltex-co.ru

[MES] Настройка отправки syslog-сообщений на syslog-сервер на MES5312 MES5316A MES5324A MES5332A
Системные журналы позволяют вести историю событий, произошедших на устройстве, а также контролировать произошедшие события в реальном времени. В журнал заносятся события семи типов: чрезвычайные, сигналы тревоги, критические и не критические ошибки, предупреждения, уведомления, информационные и отладочные.

Системные журналы позволяют вести историю событий, произошедших на устройстве, а также контролировать произошедшие события в реальном времени. В журнал заносятся события семи типов: чрезвычайные, сигналы тревоги, критические и не критические ошибки, предупреждения, уведомления, информационные и отладочные.

console(config)# logging host {ip_address |host} [port port] [severity level] [facility facility] [description text]

Пример: logging host 192.168.1.1 severity debugging

Команда включает передачу аварийных и отладочных сообщений на

удаленный SYSLOG сервер 192.168.1.1.

- ip_address– IPv4 или IPv6-адрес SYSLOG-сервера;

- host – сетевое имя SYSLOG-сервера;

- port – номер порта для передачи сообщений по протоколу

SYSLOG;

- level – уровень важности сообщений, передаваемых на

SYSLOG-сервер;

- facility – услуга, передаваемая в сообщениях;

- text – описание SYSLOG-сервера.

 

Примечание: можно настроить несколько Syslog-серверов.

Источник:
docs.eltex-co.ru

[MES] Настройка приветствия для неавторизованных пользователей на коммутаторах MES1400/2400
Для настройки приветствия неавторизованных пользователей при подключении к коммутатору требуется в глобальном режиме конфигурации выполнить команду:

console(config)# banner exec

 

коммутатор предложит ввести текст приветствия,который должен быть ограничен 1024 символами и заканчиваться на "@", пример:

 

console# conf t

console(config)# banner exec

Enter the banner text up to 1024 characters. End with symbol '@'

_________________________________________________

_________________________________________________

!Hello!Hello!Hello!Hello!Hello!Hello!Hello!Hello!

_________________________________________________

_________________________________________________

console(config)# exit

console# exit

<134> 15-Jan-1970 04:29:56.080 CLI-6-User admin logged out from console

login: admin

Password:

 

<129> 15-Jan-1970 04:29:59.660 CLI-1-Attempt to login as admin via console Succeeded

 

_________________________________________________

_________________________________________________

!Hello!Hello!Hello!Hello!Hello!Hello!Hello!Hello!

_________________________________________________

_________________________________________________

 

<134> 15-Jan-1970 04:29:59.670 CLI-6-User admin logged in via console

console#

Источник:
docs.eltex-co.ru

[MES] Настройка ресурсов маршрутизации system resources routing на MES1024 MES1124 MES2124 MES3100

При возникновении проблем с достижением лимитов, отведенных под routing их значение можно изменить.

На версии ПО 2.5.Х

console#show system resources routing

Routing

--------

Hosts: 200

Used Number of Hosts: 0

Routes: 2048

Used Number of IPv4 Routes: 840

IP Interfaces: 512

Used Number of Interfaces: 6

 

Изменение пределов производится командой

console(config)#system resources routing <routes> <host> <ip interface>

возможные значения параметров

Number of routes 20-11136

Number of host 20-2800

Number of IP interfaces 2-1024

 

New Max Number of IPv4 Routes + 2*Max Number of IP Interfaces + Max Number of IP Host должно быть меньше 11135

На версии 3.5.Х

console#show system router resources

                                        In-Use     Reserved (Current)
                                          ------ ------------------
IPv4 Entries                          0         3304
Number of Routes                0  
Number of Neighbors           0 
Number of Interfaces          500
IPv6 Entries                          0         3300
Number of Routes                0
Number of Neighbors           0
Number of Interfaces            0
Number of On-Link Prefixes 0
IPv4 Multicast                       0           3300
IPv6 Multicast                       0           3296

Изменение пределов производится командой

console(config)#system router resources

console(config)#system router resources

ip-entries     The maximum number of IPv4 entries  (<8-13280>)
ipv6-entries   The maximum number of IPv6 entries (<32-13280>)
ipm-entries     The maximum number of IPv4 multicast  (<32-13280>)
ipmv6-entries   The maximum number of IPv6 multicast entries (<32-13280>)
<CR>

Настройки применяются после перезагрузки

Источник:
docs.eltex-co.ru

[MES] Настройка стекирования на коммутаторах MES23хх/33хх/5324
Коммутаторы MES23хх/33хх/5324 можно объединять в стек до 8 устройств. В режиме стекирования MES5324 использует XLG порты для синхронизации, остальные коммутаторы семейства, кроме MES2308(P), XG порты. MES2308 и MES2308P используют оптические 1G-порты.  При этом для стекирования устройств должны использоваться для MES5324 - QSFP(40G), для MES23хх и MES33хх SFP+(10G), для MES2308(P) - SFP(1G).

При этом указанные порты не участвуют в передаче данных. Возможны две топологии синхронизирующихся устройств – кольцевая и линейная. Рекомендуется использовать кольцевую топологию для повышения отказоустойчивости стека.

Коммутаторы по умолчанию уже работают в режиме стека с UNIT ID 1

Настройка

console(config)#stack configuration links {fo1-4| te1-4 | gi9-12}

console(config)#stack configuration unit-id {1-8}

Конфигурация применится после сохранения настроек и перезагрузки

Подробней с настройкой стекирования  можно ознакомиться в "Руководстве по эксплуатации" раздел 4.4

Источник:
docs.eltex-co.ru

[MES] Настройка стекирования на коммутаторах MES31XX

Стек MES3000 функционирует как единое устройство и может состоять из 8 устройств, имеющих следующие роли, определяемые их порядковыми номерами (UID):

  • Master (UID устройства 1 или 2), с него происходит управление всеми устройствами в стеке.
  • Backup (UID устройства 1 или 2) – устройство, подчиняющееся master. Дублирует все настройки, и, в случае выхода управляющего устройства из строя, берущее на себя функции управления стеком.
  • Slave (UID устройств от 3 до 8) – устройства, подчиняющееся master. Не может работать в автономном режиме (если отсутствует master).

В режиме стекирования MES3124/MES3124F и MES3224/MES3224F используют XG3 и XG4 порты для синхронизации, при этом эти порты не участвуют в передаче данных.MES3108/MES3108F и MES3116/MES3116F используют для синхронизации только один порт - XG2, при этом этот порт не участвуют в передаче данных. Возможны две топологии синхронизирующихся устройств – кольцевая и линейная. Рекомендуется использовать кольцевую топологию для повышения отказоустойчивости стека.

Устройства с одинаковыми UID не могут работать в одном и том же стеке.

Настройка коммутатора для работы в стеке производится через меню начального загрузчика (Startup Menu).

Для входа в меню Startup необходимо прервать загрузку нажатием клавиши <Esc> или <Enter> в течение первых двух секунд после появления сообщения автозагрузки (по окончании выполнения процедуры POST).

Появится следующее меню:

  • Startup Menu
  • [1] Download Software
  • [2] Erase Flash File
  • [3] Password Recovery Procedure
  • [4] Set Terminal Baud-Rate
  • [5] Stack menu
  • [6] Back
  • Enter your choice or press 'ESC' to exit:

Необходимо выбрать пункт [5] Stack menu, нажав клавишу <5>.

Появится следующее меню:

  • Stack menu
  • [1] Show unit stack id
  • [2] Set unit stack id
  • [3] Set unit working mode
  • [4] Back
  • Enter your choice or press 'ESC' to exit:

описание которого приведено в таблице ниже.

Описание меню Stackmenuработа с параметрами стека устройства

Название пункта меню

Описание

<1>

Show unit stack id

Просмотр идентификатора устройства в стеке

Для просмотра идентификатора устройства в стеке нажмите клавишу <1>:

Current working mode is stacking.

Unit stack id set to 1.

<2>

Set unit stack id

Назначение идентификатора устройства в стеке

Для назначения идентификатора устройства в стеке нажмите клавишу <2>:

Enter unit stack id [0-8]: 1

Unit stack id updated to 1.

где

значение от «1» до «8» – номер устройства в стеке,

значение «0» - автономный режим работы коммутатора.

Для возврата в меню стека нажмите клавишу <enter>.

==== PressEnterToContinue====

<3>

Set unit working mode

Установка режима работы устройства

Для установки режима работы устройства нажмите клавишу <3>:

Enter unit working mode [1- standalone, 2- stacking]:1

Unit working mode changed to standalone.

где

значение 1 – автономный режим,

значение 2 – режим стекирования.

Для возврата в меню стека нажмите клавишу <enter>.

==== Press Enter To Continue ====

<4>

Back

Выход из меню

Для выхода из меню нажмите клавишу <4>

 

Настройка режима стека из cli производится с помощью команды:

console# unit mode

  standalone           Standalone unit without stack support.

  stackable            Stackable unit.

Для назначения UID используются команды:

console# unit renumber local after-reset {unit_id}

  <1-8>                New unit number after reset.

console# unit renumber {current_id} after-reset {new_id}

<1-8>                New unit number after reset.

 

Примечание по работе стека:

При отключении мастера (unit 1) из стека. Бэкап (unit 2) доинициализируется до мастера за 10-15 сек.  На бекап (unit 2) коммутаторе резервируется конфигурация.
Если в момент возврата unit 1 аптайм unit2 будет менее 10 минут, unit1 вновь возьмет на себя мастерство (при этом unit 2 перезагрузится. Если аптайм unit 2 будет больше, чем 10 минут, то unit 2 останется мастером, а unit1 возьмёт на себя роль backup коммутатора.

Источник:
docs.eltex-co.ru

[MES] Настройка управления для коммутатора MES5448
Для настройки управления внутри определенного влана нужно зайти в привилегированный режим

enable

 

Создать vlan управления:

vlan database

vlan 10    - где 10 – номер влана для управления коммутатором

 

Настроить для управления только что созданный vlan

network mgmt_vlan 10

 

Выбрать протокол для управления и подтвердить свой выбор

network protocol none      - где none – статический IP адрес для управления

y

  • При подтверждении изменения параметра network protocol настройки интерфейса сбрасываются, важно иметь в виду при удаленном изменении настроек на коммутаторе

 

Укажем IP-адрес коммутатора, маску подсети и шлюз по-умолчанию

network parms 192.168.1.2 255.255.255.0 192.168.1.1

 

Далее останется добавить vlan ранее настроенный vlan на порт и проверить работу управления коммутатором.

-----------------------------------------------------------------------------------------------------------------------------------------

 

Настройка управления через порт OOB

Порт OOB является единственным медным портом на корпусе MES5448, а так же несет на себе функцию выделенного управления, поэтому при начале работы с коммутатором стоит рассмотреть его настройку

  • Адрес управления и oob порта должны быть в разных подсетях.

 

Настройка так же осуществляется в привилегированном режиме

enable

 

Выбрать протокол для управления и подтвердить свой выбор

serviceport protocol none   - где none – статический IP адрес для управления

y

 

Укажем IP-адрес, маску подсети и шлюз по-умолчанию

serviceport ip 192.168.2.2 255.255.255.0 192.168.2.1

Источник:
docs.eltex-co.ru

[MES] Настройка фильтрации PVST, Rapid PVST stp bpdu MES1400 MES2400
Для фильтрации PVST, Rapid PVST stp bpdu на коммутаторах MES14xx/24xx необходимо использовать MAC ACL. Команда spanning-tree bpdufilter фильтрует stp bpdu для режимов STP/RSTP/MST (DST MAC 01:80:c2:00:00:00 )

Настройка MAC ACL для фильтрации PVST, Rapid PVST stp bpdu (DST MAC 01:00:0c:cc:cc:cd)

mac access-list extended 1
deny any host 01:00:0c:cc:cc:cd

mac access-list extended 100

interface gigabitethernet 0/23
mac access-group 1 in
mac access-group 100 in

Источник:
docs.eltex-co.ru

[MES] Настройка фильтрации незарегистрированного мультикаста MES1400 MES2400
Мультикаст считается незарегестрированным, если его нет в таблице ip igmp snooping. Отображается таблица командой show ip igmp snooping group

Активируем ip igmp snooping

console(config)# ip igmp snooping

 

В контексте  vlan. Активируем фильтрацию незарегестрированного мультикаста

console(config)# vlan 10
console(config-vlan)# ip igmp snooping
console(config-vlan)# ip igmp snooping sparse-mode enable

Источник:
docs.eltex-co.ru

[MES] Настройка функций DHCP Snooping, IP Source Guard и IP ARP inspection на MES1400/MES2400
Видео-инструкция по настройке функций DHCP Snooping, IP Source Guard и IP ARP inspection на MES1400/MES2400

Источник:
docs.eltex-co.ru

[MES] Настройка функционала Route Reflector для BGP на MES5312, MES5314A, MES5324A, MES5332A
Функционал Route reflectors (RR) позволяет избежать необходимости создание full mesh топологии между всеми iBGP-соседями, всем iBGP-соседям получить все iBGP-маршруты в AS, а также предотвратить образование петель

Функционал Route reflectors (RR) позволяет избежать необходимости создание full mesh топологии между всеми iBGP-соседями, всем iBGP-соседям получить все iBGP-маршруты в AS, а также предотвратить образование петель

 

1)Маршрут, полученный от RR-клиента перенаправляется всем остальным RR-клиентам и не-клиентам

2)Маршрут, полученный от не-клиента перенаправляется всем RR-клиентам, но не перенаправляется другим не-клиентам

3)Маршрут, полученный от eBGP-соседа перенаправляется всем RR-клиентам и не-клиентам

 

RR настраивается только на RR-сервере:

Включить пересылку маршрутов, полученных от reflector-клиента, другим BGP-соседям

console(router-bgp)# bgp client-to-client reflection

Задать идентификатор кластера BGP-маршрутизатора

console(router-bgp)# bgp cluser-id <ip_add>

Назначить BGP-cоседа Route-Reflector клиентом:

console(router-bgp-nbr-af)# route-reflector-client [ meshed ]

meshed - параметр выставляется если используется mesh-топология. При получении от такого клиента BGP-маршрутов они не будут пересылаться другим клиентам.
BGP-маршрутизатор является route-reflector'ом, если хотя бы один его сосед сконфигурирован как route-reflector клиент.

Источник:
docs.eltex-co.ru

[MES] Недоступность по управлению (telnet/ssh) на устройство MES1400 MES2400
Бывают случаи, когда коммутаторы недоступны удаленно, при этом услуги клиентам предоставляются. 

Что требуется выяснить:

1) После каких действий возникла проблема. Сама по себе или после настроек?

2) Отвечает ли коммутатора на icmp, snmp?

3) Подключиться консолью и выполнить следующие команды:

show tech-support

dump task name

dump sockets

Результаты выполнения команд сохранить в отдельный файл. Для восстановления управления перезагрузить устройство по питанию.

Источник:
docs.eltex-co.ru

[MES] Обновление ПО для всего стека через CLI на MES1024 MES1124 MES2124 MES31XX

Для этого используется команда вида:

copy tftp://<ip address>/File_Name unit://*/image ,

где

    • <ip address> – IP-адрес TFTP сервера, с которого будет производиться загрузка файла системного ПО;

    • File_Name– имя файла системного ПО

Источник:
docs.eltex-co.ru

[MES] Обновление ПО через CLI на MES1024 MES1124 MES2124 MES31XX

Для того, чтобы произвести обновление ПО с использованием CLI необходимо подключиться к коммутатору при помощи терминальной программы (например HyperTerminal) по протоколу Telnet или SSH, либо через последовательный порт.

Настройки терминальной программы при подключении к коммутатору через последовательный порт:

  • выбрать соответствующий последовательный порт.
  • установить скорость передачи данных – 115200 бит/с.
  • задать формат данных: 8бит данных, 1 стоповый бит, без контроля четности.
  • отключить аппаратное и программное управление потоком данных.
  • задать режим эмуляции терминала VT100 (многие терминальные программы используют данный режим эмуляции терминала в качестве режима по умолчанию).

       Загрузка файла системного ПО в энергонезависимую память коммутатора        

Для загрузки файла системного ПО необходимо в командной строке CLI ввести следующую команду:

сopy tftp:// xxx.xxx.xxx.xxx/File Name image, где

  • xxx.xxx.xxx.xxx – IP-адрес TFTP сервера, с которого будет производиться загрузка файла системного ПО;
  • File Name – имя файла системного ПО;

и нажать Enter. В окне терминальной программы должно появиться следующее:

COPY-I-FILECPY: Files Copy - source URL tftp://xxx.xxx.xxx.xxx/ File Name destination URL flash://image

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Если загрузка файла прошла успешно, то появится сообщение вида

COPY-N-TRAP: The copy operation was completed successfully

Выбор файла системного ПО, который будет активен после перезагрузки коммутатора

Для того, чтобы произвести выбор файла системного ПО, который будет активен после перезагрузки, необходимо в командной строке CLIввести следующую команду:

boot system { image-1 | image-2 }, где

  • image-1, image-2  – файл системного ПО.

После выбора необходимо произвести перезагрузку коммутатора командой reload.

Источник:
docs.eltex-co.ru

[MES] Обновление ПО через CLI на MES1400/MES2400
Для того, чтобы произвести обновление ПО с использованием CLI необходимо подключиться к коммутатору при помощи терминальной программы (например HyperTerminal) по протоколу Telnet или SSH, либо через последовательный порт.

Настройки терминальной программы при подключении к коммутатору через последовательный порт:

  • выбрать соответствующий последовательный порт.
  • установить скорость передачи данных – 115200 бит/с.
  • задать формат данных: 8бит данных, 1 стоповый бит, без контроля четности.
  • отключить аппаратное и программное управление потоком данных.
  • задать режим эмуляции терминала VT100 (многие терминальные программы используют данный режим эмуляции терминала в качестве режима по умолчанию).

Загрузка файла системного ПО в энергонезависимую память коммутатора.     

  • Для моделей коммутаторов MES1428, MES2408, MES2428, MES3708P используются файлы системного ПО и начального загрузчика mes2400-xxxx-xxx.iss, mes2400-xxxx-xxx.boot.
  • Для моделей коммутаторов MES2424 используются файлы системного ПО и начального загрузчика mes2424-xxxx-xxx.iss, mes2424-xxxx-xxx.boot.
  • Для моделей коммутаторов MES2448 используются файлы системного ПО и начального загрузчика mes2448-xxxx-xxx.iss, mes2448-xxxx-xxx.boot.

1. Загрузка файла начального загрузчика в энергонезависимую память коммутатора

Для загрузки файла начального загрузчика необходимо в командной строке CLI ввести следующую команду:

#console copy tftp://<ip-address>/filename boot,

где

  • <ip-address> — IP-адрес TFTP-сервера, с которого будет производиться загрузка файла начального загрузчика;
  • filename — имя файла начального загрузчика.

Процесс копирования выглядит следующим образом:

console# copy tftp://<ip-address>/filename.boot boot

Erasing bootloader sector and starting copy operation...

...Completed: 10 %...

...Completed: 20 %...

...Completed: 30 %...

...Completed: 40 %...

...Completed: 50 %...

...Completed: 60 %...

...Completed: 70 %...

...Completed: 80 %...

...Completed: 90 %...

Copied tftp://<ip-address>/filename.boot ==> boot

Если загрузка файла начального загрузчика прошла успешно, то появится сообщение вида:

Copied tftp://<ip-address>/filename.boot ==>boot

Перейти к пункту 2 инструкции.

Если процесс обновления прерывается сообщением %Copied invalid bootloader file, то нужно проверить целостность файла начального загрузчика на tftp-сервере.

Если процесс обновления прерывается сообщением %Unable to copy remote bootloader file, то нужно проверить:

  • Доступность tftp-сервера
  • Наличие файла и его соответствие модели устройства.

После устранения ошибок нужно повторить загрузку файла начального загрузчика и перейти к пункту 2.

2. Загрузка файла системного ПО в энергонезависимую память коммутатора

Для загрузки файла системного ПО необходимо в командной строке CLI ввести следующую команду:

#console copy tftp://<ip-address>/filename.iss image,

где

  • <ip-address>—IP-адрес TFTP-сервера, с которого будет производиться загрузка файла системного ПО;
  • filename—имяфайла системного ПО.

Процесс копирования выглядит следующим образом:

console# copy tftp://<ip-address>/filename.iss image

Erasing bootloader sector and starting copy operation...

...Completed: 10 %...

...Completed: 20 %...

...Completed: 30 %...

...Completed: 40 %...

...Completed: 50 %...

...Completed: 60 %...

...Completed: 70 %...

...Completed: 80 %...

...Completed: 90 %...

Copied tftp://<ip-adress>/filename.iss image ==> image

Если загрузка файла системного ПО прошла успешно, то появится сообщение вида:

Copied tftp://<ip-address>/filename.iss ==>image

Перейти к пункту 3 инструкции.

Если процесс обновления прерывается сообщением %Copied invalid image, то нужно проверить целостность файла начального загрузчика на tftp-сервере.

Если процесс обновления прерывается сообщением %Unable to copy remote image, то нужно проверить:

  • Доступность tftp-сервера
  • Наличие файла и его соответствие модели устройства.

После устранения ошибок нужноповторитьзагрузку файла системного ПО и перейти к пункту 3.

3. Выбор файла системного ПО, который будет активен после перезагрузки коммутатора

По умолчанию файл системного ПО загружается в неактивную область памяти (Inactive image) и будет активным после перезагрузки коммутатора.

4. Перезагрузка коммутатора

Для выполнения перезагрузки необходимо выполнить команду reload.

Источник:
docs.eltex-co.ru

[MES] Ограничение скорости (rate-limit) входящего трафика для заданной VLAN на MES5312 MES5316A MES5324A MES5332A
Для ограничения скорости необходимо в режиме глобального конфигурирования воспользоваться командой rate-limit

Для этого необходимо в режиме глобального конфигурирования воспользоваться командой rate-limit

rate-limit vlan_id rate burst,

где

  • vlan_id – номерVLAN;
  • rate – средняя скорость трафика (CIR), кбит/с;
  • burst – размер сдерживающего порога (ограничение скорости) в байтах.

Источник:
docs.eltex-co.ru

[MES] Ограничение скорости входящего трафика на основании Policy Перейти к концу метаданных MES1400 MES2400
Данный функционал позволяет ограничить скорость только для выбранного трафика

Создать ACL для классификации трафика по порту:

console(config)# mac access-list extended 1
console(config-ext-macl)# permit any any

Прикрепить ACL на требуемый порт (gi0/2)

console(config)# interface gi 0/2
console(config-if)# mac access-group 1 in

Создать Class-map, привязать ACL к ней

console(config)# Class-map 1001
console(config-cls-map)# match access-group mac-access-list 1

console(config-cls-map)# set class 1010 

Создать meter и указать ограничение в kbps

console(config)# meter 1
console(config-meter)# meter-type avgRate cir 10000 kbps

Создать Policy-map, привязать к ней class-map, а также привязать созданный ранее meter

console(config)# Policy-map 1001

console(config-ply-map)# set policy class 1010 default-priority-type ipdscp 0
console(config-ply-map)# set meter 1 exceed-action drop

exceed-action drop - всё что выше ограничения, то отбрасываем

Источник:
docs.eltex-co.ru

[MES] Ограничение скорости входящего/исходящего трафика на порту MES5312 MES5316A MES5324A MES5332A
Для этого необходимо в режиме настройки Ethernet-интерфейса выполнить ряд команд.

Источник:
docs.eltex-co.ru

[MES] Ограничение скорости входящего/исходящего трафика на порту для коммутаторов MES1400 MES2400
Для этого необходимо в режиме настройки Ethernet-интерфейса выполнить следующие команды.

Для ограничения входящего трафика:

console(config-if)# rate-limit input <rate>

, где rate скорость трафика в кбит/с.

Примечание: значение rate должно быть кратно 16 и должно находиться в пределах 16 - 4194288 кбит/с.

Для ограничения исходящего трафика:

console(config-if)# rate-limit output <rate>

, где rate скорость трафика в кбит/с

Примечание: значение rate должно быть кратно 16 и должно находиться в пределах 16 - 1000000 кбит/с.

Источник:
docs.eltex-co.ru

[MES] Ограничение числа tcp-syn запросов на MES5312, MES5316A, MES5324A, MES5332A
На коммутаторах mes реализован функционал security-suite. Используя security-suite можно настроить порог syn-запросов на определенный ip-адрес/подсеть с целью защиты от syn-атак.

На коммутаторах mes реализован функционал security-suite. Используя security-suite можно настроить порог syn-запросов на определенный ip-адрес/подсеть с целью защиты от syn-атак.

Пример настройки:

Глобально включить security-suite:

console(config)# security-suite enable

Настроить на порту порог:

console(config)# interface te 1/0/1
console(config-if)# security-suite dos syn-attack 200 192.168.11.0 /24

200 - максимальное число подключений в секунду

Посмотреть security-suite можно командой show security-suite configuration.

console# show security-suite configuration

Security suite is enabled (Per interface rules are enabled).
Denial Of Service Protect:
Denial Of Service SYN-FIN Attack is enabled
Denial Of Service SYN Attack

Interface      IP Address             SYN Rate (pps)
-------------- -------------------- -----------------------
te1/0/1        192.168.11.0/24         200

Martian addresses filtering
Reserved addresses: disabled
Configured addresses:

SYN filtering

Interface IP Address TCP port
-------------- ---------------------- --------------------

ICMP filtering

Interface IP Address
-------------- ----------------------

Fragmented packets filtering

Interface IP Address
-------------- ----------------------

Источник:
docs.eltex-co.ru

[MES] Одновременная привязка ACL к порту на базе MAC и IPv4 на MES5312, MES5316A, MES5324A, MES5332A
Для этого необходимо в режиме настройки Ethernet интерфейса или группы портов выполнить следующую команду: service-acl input MAC-ACL IPv4-ACL

Для этого необходимо в режиме настройки Ethernet интерфейса или группы портов выполнить следующую команду:

service-acl input MAC-ACL IPv4-ACL

, где

  • MAC-ACL – имя списка ACLна базе MAC;
  • IPv4-ACL – имя списка ACLна базе IPv4.

Источник:
docs.eltex-co.ru

[MES] Особенности downgrade ПО коммутаторов MES1400/MES2400
Ввиду расширения функционала, а также по причине усовершенствования синтаксиса тех или иных команд от версии к версии могут возникнуть изменения в формате представления настроек устройства.

В данной статье отображены изменения в синтаксисе команд, начиная от версии 10.2.6, которые могут повлиять на предоставление сервисов и поведение устройства (в т.ч доступ до коммутатора) при downgrade версии ПО. В случае с обновлением версии ПО предусмотрен автоматический переход к новому синтаксису команд без вмешательства оператора. Для предотвращения изменений в работе функционала, претерпевших изменение синтаксиса или логики работы в новых версиях, downgrade требуется производить по следующей методике:

  1. Перед началом downgrade версии ПО требуется в startup-config загрузить конфигурацию предыдущей версии ПО (со старым синтаксисом);
  2. Сменить образ ПО (если требуется, предварительно загрузить его в неактивный образ ПО);
  3. Не сохраняя конфигурации перезагрузить устройство.
  • Изменения в логике отображения команды no shutdown в конфигурации при переходе с 10.2.7 (и выше) на версии ниже 10.2.7 :

По причине смены формата конфигурации между версиями 10.2.6.2 (и ниже) и 10.2.7 (и выше) , которые затронули логику отображения команды no shutdown на портах, при откате версии ПО все порты перейдут в состояние shutdown. При downgrade версии в startup-config должна лежать конфигурация предыдущей версии ПО с явно прописанной командой no shutdown на всех портах.

  • Изменение в синтаксисе команд ААА при переходе с 10.2.6 (и выше) на версии ниже 10.2.6:

Изменен синтаксис команд login authenthication, enable authenthicationкоторые приведены к виду aaa authenthication {login | enable}. Для того,чтобы при downgrade на версию 10.2.6 (и ниже) команды аутентификации отработали корректно, в startup-config требуется записать настройки в старом формате:

1 Особенности downgrade ПО коммутаторов MES1400 MES2400

  • Изменения в синтаксисе команды logging-file и logging-server в конфигурации при переходе с 10.2.7.2 (и выше) на версии ниже 10.2.7.2 :

Синтаксис команд logging-file | logging-server <priority> приведен к виду logging-file | logging-server <facility> <severity>. Для того, чтобы при откате на версию ниже 10.2.7.2 команды логирования работали корректно, необходимо в startup-config записать команды в старом формате:

2 Особенности downgrade ПО коммутаторов MES1400 MES2400

3  Особенности downgrade ПО коммутаторов MES1400 MES2400

 

Источник:
docs.eltex-co.ru

[MES] Остановка выполнения команд на MES1400 MES2400
Выполнение команд можно остановить двойным нажатием на клавишу Esc.

Выполнение команд можно остановить двойным нажатием на клавишу Esc.

Источник:
docs.eltex-co.ru

[MES] Отключение DHCP-клиента на MES1400 MES2400
console(config-if)# no ip address dhcp

console(config-if)# no ip address dhcp

Например, отключить DHCP-клиент на интерфейсе VLAN 2

console(config)# interface vlan 2

console(config-if)# no ip address dhcp

Источник:
docs.eltex-co.ru

[MES] Отключение DHCP-клиента на MES5312 MES5316A MES5324A MES5332A

Источник:
docs.eltex-co.ru

[MES] Отключение кнопки "F" на MES1024 MES1124 MES2124 MES3100

Кнопка "F" - функциональная кнопка для перезагрузки устройства и сброса к завод-ским настройкам:

  • при нажатии на кнопку длительностью менее 10 с. происходит пере-загрузка устройства;
  • при нажатии на кнопку длительностью более 10 с. происходит сброс настроек устройства до заводской конфигурации.

Отключить кнопку можно командой:

console(config)# reset-button disable 

Чтобы запретить сброс устройства к заводским настройкам, но разрешить перезагрузку, следует ввести команду:

console(config)# reset-button reset-only 

Источник:
docs.eltex-co.ru

[MES] Отключение кнопки "F" на MES1400/MES2400
Кнопка "F" - функциональная кнопка для перезагрузки устройства и сброса к завод-ским настройкам:
  • при нажатии на кнопку длительностью менее 10 с. происходит пере-загрузка устройства;
  • при нажатии на кнопку длительностью более 10 с. происходит сброс настроек устройства до заводской конфигурации.

Отключить кнопку можно командой:

console(config)# reset-button disable 

Чтобы запретить сброс устройства к заводским настройкам, но разрешить перезагрузку, следует ввести команду:

console(config)# reset-button reset-only 

Источник:
docs.eltex-co.ru

[MES] Очереди для принимаемого на CPU трафика MES1400 MES2400 MES 3708P
Распределение очередей для принимаемого на CPU трафика для MES1400/2428x/2408x/3708P и MES2424/2448:

Распределение очередей для принимаемого на CPU трафика для MES1400/2428x/2408x/3708P

Сервис
Номер очереди
DHCP relay, Firewall (уведомление о начале атаки), L2PT,EOAM 1
Port Security (уведомление о превышении ограничения), незарегистрированный мультикаст(режим IP based IGMP/MLD snooping) 2
DHCP client, DHCPv4/v6 snooping, IPv6 NDP 3
ARP, PPPoE IA 4
EAPOL, IGMP/MLD snooping 5
Трафик с MAC DA коммутатора 6
Зарезервировано 7
BPDU,LBD, Slow Protocol(LACP) 8

Распределение очередей для принимаемого на CPU трафика для MES2424/2448:

Сервис
Номер очереди
Сервис
Номер очереди
Прочий трафик 1
Firewall (уведомление о начале атаки) 2
Незарегистрированный мультикаст (в режиме Pbased IGMP/MLD) 7
Port Security (уведомление о превышении ограничения) 8
DHCP Client/Snooping 12
PPPoE IA Snooping 12
DHCP Server/Relay 15
EAPOL 16
L2 Protocol Tunneling 16
LLDP 18
OAM 20
IPv6 ND Inspection 21
ARP Inspection 22
IGMP/MLD Snooping 24
Пакеты с MAC DA коммутатора 25
Slow protocols (LACP) 30
BPDU 31
Loopback detection 31
Stacking 32

Источник:
docs.eltex-co.ru

[MES] Очереди трафика на ЦПУ коммутатора на MES5448 MES7048
Коммутатор имеет встроенный механизм защиты Control plane в виде ограничений трафика на ЦПУ по очередям.

Команда для просмотра лимитов по очередям и текущей скорости  для трафика в каждой очереди отображается по команде:

console# show cpu-traffic rate-limit queue

В текущей версии ПО на коммутаторе используются только первые 7 очередей.

Начиная с версии ПО 8.4.0.7, увеличен лимит для всех очередей до 10K pps. Команда для изменения лимита очереди:

console(Config)# cpu-traffic rate-limit queue X Y

где X - номер очереди, Y - лимит для очереди.

Источник:
docs.eltex-co.ru

[MES] Перезагрузка юнитов в стеке на MES5448 MES7048
Возможные причины перезагрузки: 1. По питанию; 2. По команде reload; 3. Ошибка в работе ПО.

Остановимся подробней на пункте 3. С 1,2 пунктами вопров возникнуть не должно.

В первую очередь необходимо собрать как можно больше информации.   К диагностике добавить подробное описание наблюдаемой ситуации.

Диагностика:

  1. Подключиться по telnet/ssh (если удаленного доступа нет, то по консоли) и снять выводы в момент проблемы.
    show running-config
    show bootvar
    show version
    show stack-status
    show stack-port
    show interfaces status all
    show fiber-ports optical-transceiver all
    show fiber-ports optical-transceiver-info all
    show logging persistent
    show logging buff
    debug tech-support

    unit_id - номер юнита в стеке. Выполнить команду для всех юнитов.
    Предварительно в терминале включить запись истории.
  2. Описать схема подключения стека;
  3. Есть ли индикация на стековых портах?
  4. Производились ли какие-то действия, приведшие к возникновению проблемы или произошла она сама по себе?
  5. Работают ли со стеком скрипты, мониторится ли коммутатор по snmp? Если так, просим предоставить информацию по скриптам и перечень OID.

Источник:
docs.eltex-co.ru

[MES] Перенаправить вывод команды show tech-support в файл на MES5448 MES7048
Для сбора комплексной информации с устройства используется команда show tech-support. Вывод данной команды можно перенаправить в файл на флэш коммутатора и далее выгрузить файл на сервер по tftp/ftp/scp/sftp или сохранить на USB

console# show tech-support file

Выгрузить файл  можно командой. Например, для tftp

console# copy nvram:tech-support tftp://x.x.x.x/<fail name>

Источник:
docs.eltex-co.ru

[MES] Поддерживаемые модели SFP трансиверов на MES5448 MES7048
Коммутаторы MES поддерживают SFP-трансиверы, которые соответствуют стандартам INF-8074_2000 и SFF-8472-2010 (для модулей поддерживающих DDM).

Это относится как к 100M, так и к 1000M трансиверам. 
Для SFP+ стандарт SFF-8431. Для QSFP+ стандарты SFF-8635 и SFF-8436. Для QSFP28 стандарт SFF-8635.
К конкретным производителям привязки нет.

Источник:
docs.eltex-co.ru

[MES] Подключение блока питания 12В в разъем питания MES2324B
Вместо АКБ может быть подключен источник питания на 12В, но должны быть соблюдены следующие условия:

1. БП_12V должен иметь гольваническую развязку вход/выход не менее 1500В.
2. БП должен быть рассчитан на мощность нагрузки в два раза больше максимальной потребляемой мощности «конкретного» коммутатора.
Соответственно максимальный выходной ток БП должен быть больше либо равен (2*P_коммутатора)/(Uбп-Uдиода), Uбп-Uдиода—это выходное напряжение БП с вычетом падения напряжения на диоде.
3. Выход этого БП должен быть подключен только к одному коммутатору к разъёму Bat с соблюдением полярности.
4. БП нужно подключить черед диод.
5. Выходное напряжение БП_12V может быть в диапазоне 11-13.6В. Состояние «заряд» детектироваться не будет, т.к. «зарядное» определяет процесс заряда по величине тока текущего в АКБ

Источник:
docs.eltex-co.ru

[MES] Правила конфигурации IPv4/IPv6/MAC ACL MES1400 MES2400
Правила конфигурации:
  1. Каждый ACL содержит только 1 правило.
  2. Несколько ACL можно привязать к одному интерфейсу.
  3. Порядок отработки правил определяется по приоритету правила , указанному в ACL, при равенстве приоритетов - по номеру ACL.
  4. ACL автоматически снимается с интерфейса при изменении в нем правила.
  5. Максимальное число ACL – 100 IP/IPv6 и 100 MAC.
  6. На данный момент поддерживается только входящее направление на интерфейсах(in).
  7. В стандартных IP ACL возможна фильтрация только по префиксам, в расширенных ACL – по дополнительным параметрам.
  8. После того, как любой ACL будет привязан к интерфейсу, для этого интерфейса применится правило implicit deny any any.

Пример настройки фильтрации padi/pado через User-defined offset:

console(config)# user-defined offset 1 ethtype 0
console(config)# mac access-list extended 1
console(config-ext-macl)# deny 00:00:00:00:00:01 ff:ff:ff:ff:ff:00 any user-defined offset1 0x8863 0xffff
console(config-ext-macl)#  ex
console(config)# interface gigabitethernet 0/1
console(config-if)# mac access-group 1 in

Для прохождения остальных пакетов на интерфейсе требуется добавить второй ACL, разрешающий прохождение пакетов, не попадающих под правило фильтрации padi/pado:

console(config)# mac access-list extended 2
console(config-ext-macl)# permit any any
console(config-ext-macl)#  ex
console(config)# interface gigabitethernet 0/1
console(config-if)# mac access-group 2 in

Источник:
docs.eltex-co.ru

[MES] Превращение коммутатора в HUB на MES1024 MES1124 MES2124 MES3100

Для этого необходимо отключить изучение MAC адресов в VLAN.  Команда в CLI для отключения изучения MAC адресов во всех VLAN:

console(config)# no mac address-table learning vlan all

Команда в CLI для отключения изучения MAC адресов в данной VLAN:

console(config)# no mac address-table learning vlan vlan_id

Источник:
docs.eltex-co.ru

[MES] Превращение коммутатора в HUB на MES5312, MES5316A, MES5324A, MES5332A
Превращение коммутатора в HUB на MES5312, MES5316A, MES5324A, MES5332A

Для этого необходимо отключить изучение MAC адресов в VLAN.  Команда в CLI для отключения изучения MAC адресов во всех VLAN:

console(config)# no mac address-table learning vlan all

Команда в CLI для отключения изучения MAC адресов в данной VLAN:

console(config)# no mac address-table learning vlanvlan_id

Источник:
docs.eltex-co.ru

[MES] Применение Route-Map для BGP-соседа на MES5312, MES5314A, MES5324A, MES5332A
Применение route-map для соседа в BGP.

Применение route-map для соседа в BGP:
console(config)# router bgp 64700
console(router-bgp)# neighbor 1.1.1.1
console(router-bgp-nbr)# address-family ipv4 unicast
console(router-bgp-nbr-af)# route-map test in 

В момент применения route-map in для входящих маршрутов по умолчанию используется механизм Route-Refresh, отправляется запрос BGP-соседу на повторную отправку маршрутов без разрыва BGP-соседства для применения к ним политики Route-Map. Аналогично коммутатор отвечает на входящие сообщения Route Refresh от BGP-соседа, отправляя ему маршруты.

 

Также есть возможность настроить механизм Soft Reconfiguration

console(router-bgp-nbr)#soft-reconfiguration inbound

В момент включения данной настройки происходит запись всех ранее полученных от BGP-соседа маршрутов в отдельную область памяти.  В случае применения входящей политики будет использован механизм soft-reconfiguration inbound, а не Route Refresh, и политика будет применяться к маршрутам из памяти, перезапроса маршрутов у BGP-соседа не произойдет.

В случае получения от соседа сообщения route-refresh, коммутатор обработает это сообщение как и до включения soft-reconfiguration inbound, при этом сам он сообщения route-refresh слать не будет.

 

Команды диагностики:

Команда show ip bgp neighbors X.X.X.X received-routes позволяет посмотреть  все принятые маршруты, до применения к ним входящей политики.

Измененные же маршруты будут доступны по команде show ip bgp.

 

Источник:
docs.eltex-co.ru

[MES] Пример настройки IGMP Snooping на коммутаторах серии 24xx
Создаем вланы: 200 для данных и 300 для мультикаста

console# config terminal

console(config)# vlan 200,300

console(config-vlan-range)# vlan active  vlan active

console(config-vlan-range)# exit

 

Добавляем вланы на порты (для примера порт 1 смотрит в сторону абонента, 25 - аплинк)

console(config)# interface gigabitethernet 0/1

console(config-if)#switchport general allowed vlan add 200 untagged

console(config-if)#switchport general pvid 200

console(config-if)#switchport multicast-tv vlan 300

console(config-if)#exit

 

console(config)# interface gigabitethernet 0/25

console(config-if)# switchport mode general

console(config-if)# switchport general allowed vlan add 200,300

 

Создаем профиль с разрешенными диапазонами мультикастовых групп и включаем Igmp Snooping

console(config)# ip mcast profile 1

console(config-profile)# permit

console(config-profile)# range 224.1.1.1 224.1.1.255

console(config-profile)#   range 224.1.2.1 224.1.2.255

console(config-profile)#   range 224.1.3.1 224.1.3.255

console(config-profile)#   profile active

console(config-profile)# exit

 

console(config)# snooping multicast-forwarding-mode ip

console(config)# ip igmp snooping

console(config)# ip igmp snooping multicast-vlan enable

 

Включаем IGMP Snooping во вланах и настраиваем аплинк как порт-источник мультикаста

console(config)# vlan 200

console(config-vlan)# ip igmp snooping

console(config-vlan)# exit

console(config)# vlan 300

console(config-vlan)#   ip igmp snooping

console(config-vlan)#   ip igmp snooping fast-leave (опционально)

console(config-vlan)# ip igmp snooping mrouter gigabitethernet 0/25

console(config-vlan)#   ip igmp snooping multicast-vlan profile 1

console(config-vlan)# end

 

Источник:
docs.eltex-co.ru

[MES] Пример настройки OSPF
В качестве, примера, настроим соседство OSPF между коммутаторами MES3124 (версия 2.5.47) и MES3324 (версия 4.0.9).
Настройка для версии 2.5.х

1) Создаем interface vlan для создания соседства

console(config)#interface vlan 10

console(config-if)#ip address 10.10.10.6 255.255.255.252

console(config-if)#exit

2) Настройки в режиме глобальной конфигурации

console(config)#router ospf enable

console(config)#router ospf area 4.4.4.4

console(config)#router ospf redistribute connected

console(config)#router ospf router-id 1.1.1.1

3) Настройка интерфейса ip

console(config)#interface ip 10.10.10.6

console(config-ip)#ospf

console(config-ip)#ospf area 4.4.4.4

console(config-ip)#exit

Настройка для версии  4.0.x 

1) Создаем interface vlan для создания соседства

console(config)#interface vlan 10

console(config-if)#ip address 10.10.10.5 255.255.255.252

console(config-if)#exit

2) Настройки в режиме глобальной конфигурации

console(config)#router ospf 1

console(router_ospf_process)#network 10.10.10.5 area 4.4.4.4

console(router_ospf_process)#router-id 5.5.5.5

console(router_ospf_process)#exit

 Контроль работы протокола

Просмотр  ospf соседей  - sh ip ospf neighbor

Просмотр таблицы LSDB - show ip ospf database

Просмотр состяния ospf -  sh ip ospf

 

Настройка параметров ospf аутентификации

1) Настраиваем ключ для аутентификации

console(config)#key chain TEST_KEYCHAIN

(config-keychain)#key 1

(config-keychain-key)#key-string test

(config-keychain-key)#exit

(config-keychain)#exit

 

2) Добавляем ключ к аутентификации md5 по ospf

console(config)#interface ip 10.10.10.6

console(config-ip)ip ospf authentication message-digest

console(config-ip)#ip ospf authentication message-digest

console(config-ip)#ip ospf authentication key-chain TEST_KEYCHAIN

console(config-ip)#ip ospf authentication-key 1

console(config-ip)#ip ospf cost 1

console(config-ip)#exit

Источник:
docs.eltex-co.ru

[MES] Пример фильтрации PPPoE кадров на основе заголовка EtherType
Для начала нужно создать ACL, основанный на МАС-адресации с названием test и создать разрешающие правила для EtherЕype 0x8863 и 0x8864

console# configure

console(config)# mac access-list extended test

 permit any any 8863 0000 

 permit any any 8864 0000 

 deny any any

 

Зайти в настройки нужного порта и применить ACL на входящий трафик

interfaces GigabitEthernet 1/0/x     - где x – номер порта

 service-acl input test

 

Данный ACL разрешит прохождение только PPPoE пакета.

Чтобы разрешить прохождение к аплинк портам, нужно настроить PPPoE Intermediate Agent

Включить работу PPPoE Intermediate Agent в глобальном конфиге

console(config)# pppoe intermediate-agent

 

Зайти в настройки настраиваемого порта и включить на нем работу PPPoE Intermediate Agent

interfaces GigabitEthernet 1/0/1

 pppoe intermediate-agent

 

Зайти в настройки аплинка и включить на нем работу PPPoE Intermediate в режиме trust

interfaces GigabitEthernet 1/0/y     - где y – номер аплинк порта

 pppoe intermediate-agent trust

 

Поддерживаемые значения EtherType представлены в руководстве пользователя приложение В

Инструкции есть у каждой модели коммутатора на сайте во вкладке «Файлы» Главная  > Каталог  > Ethernet коммутаторы  > Коммутаторы доступа 1G / 10G  > MES2324 Eltex.

https://eltexcm.ru/catalog/ethernet-kommutatory/kommutatory-agregacii-1g/mes2324.html

Источник:
docs.eltex-co.ru

[MES] Проблема с потерей транзитного трафика
Проблема с потерей трафика может возникать из-за: - перегрузки пропускной способности интерфейсов; - ошибок на интерфейсах; - ошибок в ПО; - аппаратных проблем.

Проблема с потерей трафика может возникать из-за:

  • перегрузки пропускной способности интерфейсов
  • ошибок на интерфейсах
  • ошибок в ПО
  • аппаратных проблем

Диагностику нужно  начинать с проверки утилизации интерфейсов и проверки ошибок на них. Для этого используются команды.

  • Для определения статуса интерфейсов

      console# show interfaces status all
      console# show interfaces status err-disabled

  • Для просмотра утилизация по интерфейсам

      console# show interface ethernet all

  • Для просмотра ошибок по каждому интерфейсу, на котором наблюдается проблема
    console# show interface <интерфейс>
    console# debug show-int
  • Определение уровня оптического сигнала
    console# show fiber-ports optical-transceiver all
  • При использовании стека необходима диагностика  по стек-портам

      console# show stack-port diag all
      console# show stack-port counters
      console# show stack-port

Если в процессе диагностики были найдены ошибки на интерфейсах - следует проверить целостность оптического линка,  уровни оптических сигналов. Попробовать заменить используемые на портах SFP, сам порт. После того, как мы убедились в отсутствии проблем на "физике" и  перегрузок на интерфейсах, необходимо собрать диагностику со стороны ПО при помощи команд:

  • Проверка версии и конфигурации
    console# show version
    console# show bootvar
    console# show switch
    console# show startup-config
    console# show running-config
  • Проверка загрузки ЦПУ
    console# show process cpu
  • Проверка утилизации очередей на ЦПУ
    console# show cpu-traffic rate-limit queue
  • Сбор логов с устройства
    console# show logging buffered
    console# copy nvram:crash-log tftp://<ip address>/<file name>
    console# copy nvram:errorlog tftp://<ip address>/<file name>

Источник:
docs.eltex-co.ru

[MES] Просмотр детализированной статистики загрузки процессора MES24xx MES1428
При эксплуатации коммутаторов в сетях клиентов могут возникать ситуации, когда на коммутаторе фиксируется высокая загрузка CPU ~ 80-100%.

Клиенты обращаются в службу поддержки с просьбой помочь разобраться, что вызывает такую аномально высокую загрузку. Для анализа ситуации службе поддержки требуется информация по процессам, статистике и утилизации CPU,  полученная в момент проблемы.

 

Команды необходимо выполнять в момент проблемы  5 раз с интервалом 20 секунд:

show env cpu

show cpu rate limit

show env tasks

 

Далее снять:

show tech-sup

Источник:
docs.eltex-co.ru

[MES] Просмотр дефолтных настроек на MES1024 MES1124 MES2124 MES31XX

Для этого необходимо воспользоваться командой

console# show system defaults

 

Источник:
docs.eltex-co.ru

[MES] Просмотр информации в выводе команд show для коммутаторов MES1400/MES2400
При просмотре информации командой show можно использовать несколько способов:
  • Для вывода информации постранично используем «space»
  • Для вывода информации построчно «enter»

При использовании команды

console# set cli pagination off

вывод информации командой show будет происходить полностью, не постранично

Источник:
docs.eltex-co.ru

[MES] Просмотр информации об установленном трансивере (серийный номер, тип, входную/выходную мощность и др) на MES1400 MES2400
Для этого необходимо воспользоваться командой: console# show fiber-ports optical-transceiver {gigabitethernet gi_port | tengigabitethernet te_port}

Для этого необходимо воспользоваться командой:

console# show fiber-ports optical-transceiver {gigabitethernet gi_port | tengigabitethernet te_port}

Пример:

console# show fiber-ports optical-transceiver gi0/9

Port        Temp  Voltage   Current   Output       Input         LOS  Transceiver

            [C]   [V]       [mA]      Power        Power              Type

                                      [mW / dBm]  [mW / dBm]

----------- ------ ------- -------- ------------- -------------- ---- -------------

gi1/0/9     23.6   3.304    22.550   0.27 / -5.65  0.00 / -40.00  Yes   Fiber

Temp - Internally measured transceiver temperature

Voltage - Internally measured supply voltage

Current - Measured TX bias current

Output Power - Measured TX output power in milliWatts/dBm

Input Power - Measured RX received power in milliWatts/dBm

LOS - Loss of signal

N/A - Not Available, N/S - Not Supported, E - error

Transceiver information:

Vendor name: OEM

Serial number: S1C53253701826

Part number: APSB53123CDS20

Vendor revision: 1.00

Connector type: SC

Transceiver type: SFP/SFP+

Compliance code: 1000BASE-BX10

Laser wavelength: 1550 nm

Transfer distance: 20000 m

Diagnostic: Supported

Источник:
docs.eltex-co.ru

[MES] Просмотр информации об установленном трансивере (серийный номер, тип) на MES5312 MES5316A MES5324A MES5332A

Для этого необходимо воспользоваться командой:

console# show fiber-ports optical-transceiver interface{tengigabitethernette_port}

Пример:

console# show fiber-ports optical-transceiver interface TengigabitEthernet1/0/1

Port        Temp    Voltage      Current     Output     Input      LOS
            [C]     [Volt]       [mA]        Power      Power
                                             [mWatt]    [mWatt]
------     ------  -------       -------     -------    -------    ---
te1/0/1     23      3.29         3.49        0.50       0.49        No

Temp - Internally measured transceiver temperature
Voltage - Internally measured supply voltage
Current - Measured TX bias current
Output Power - Measured TX output power in milliWatts
Input Power - Measured RX received power in milliWatts
LOS - Loss of signal
N/A - Not Available, N/S - Not Supported, W - Warning, E - Error

Transceiver information:
Vendor name: FANG HANG
Serial number: A85371140603
Part number: FH-SP851TCDL03
Vendor revision: V02
Connector type: LC
Type: SFP/SFP+
Compliance code: 10GBASE-SR
Laser wavelength: 850 nm
Transfer distance: 80 m
Diagnostic: supported

Источник:
docs.eltex-co.ru

[MES] Просмотр скорости входящих фреймов, обрабатываемых CPU на MES5312 MES5316A MES5324A MES5332A

Для просмотра использовать команду:

console# show cpu input-rate detailed

Источник:
docs.eltex-co.ru

[MES] Просмотр статистики по загрузке интерфейсов на MES5312 MES5316A MES5324A MES5332A

Команда для просмотра статистики для всех интерфейсов:

console# show interfaces utilization

Для просмотра статистики на определенном интерфейсе необходимо воспользоваться командой с указанием интерфейса:

console# show interfaces utilization { tengigabitethernet te_port | port-channel group}

Источник:
docs.eltex-co.ru

[MES] Просмотр статистики порта на MES1400 MES2400
Команда, которая позволяет посмотреть статистику по пакетам на физическом интерфейсе

Команда, которая позволяет посмотреть статистику по пакетам на физическом интерфейсе

console# show interfaces counters [interface-id]

Например, 

sh interfaces counters GigabitEthernet 0/5

Port

InOctets

InUcast

InMcast

InBcast

InDiscard InErrs InHCOctet

gi1/0/5

110684852

52554

133762

48

5 0 110684852

Port

OutOctets

OutUcast

OutMcast

OutBcast

OutDiscard OutErrs OutHCOctet

gi1/0/5

71762424

42121

81577

22

0 0 71762424

 

InOctets - Количество принятых байтов.

InUcast -Количество принятых одноадресных пакетов.

InMcast - Количество принятых многоадресных пакетов.

InBcast - Количество принятых широковещательных пакетов.

OutOctets - Количество переданных байтов.

OutUcast - Количество переданных одноадресных пакетов.

OutMcast - Количество переданных многоадресных пакетов.

OutBcast - Количество переданных широковещательных пакетов

InDiscard - Количество отброшенных пакетов на приеме

OutDiscard - Количество отброшенных пакетов на передаче

InErrs - Количество ошибок на приеме

OutErrs - Количество ошибок на передаче

InHCOctet - Количество принятых 64-битных пакетов

OutNCOctet -  Количество переданных 64-битных пакетов

Источник:
docs.eltex-co.ru

[MES] Просмотр счетчиков интерфейса на MES5312 MES5316A MES5324A MES5332A

Команда, которая позволяет посмотреть статистику по пакетам на физическом интерфейсе

console# show interfaces counters [interface-id]

Например, 

console# sh interfaces counters te 1/0/12

Port

InUcastPkts

InMcastPkts

InBcastPkts

InOctets

te1/0/12

52554

133762

48

110684852

Port

OutUcastPkts

OutMcastPkts

OutBcastPkts

OutOctets

te1/0/12

42121

81577

22

71762424

 

FCS Errors: 0

Принятые пакеты содержат ошибки контрольной суммы CRC

Single Collision Frames: 0

Количество кадров , принятых с единичной коллизией и впоследствии переданные успешно

Multiple Collision Frames: 0

Количество кадров , принятых больше, чем с одной коллизией и впоследствии переданные успешно

SQE Test Errors: 0

Количетство раз, когда принят SQE TEST ERROR.

Deferred Transmissions: 0

Количество кадров, для которых первая передача задерживается из-за занятости среды передачи

Late Collisionss: 0

Количество раз когда обнаружена Late Collisions

Carrier Sense Errors: 0

Количество раз, когда происходили ошибки из-за потери несущей при попытке передаче данных

Oversize Packets: 0

Количество принятых, кадров, превышающих максимально разрешенный размер кадра

Internal MAC Rx Errors: 0

Количество кадров, приём которых сопровождался внутренними ошибками на физическом уровне

Symbol Errors: 0

Количество раз, когда интерфейс не может интерпретировать принятый символ

 Received Pause Frames: 0

Количество принятых пакетов, содержащих pause-frame

Transmitted Pause Frames: 0

Количество переданных пакетов, содержащих pause-frame

Источник:
docs.eltex-co.ru

[MES] Просмотр уровня загрузки CPU для каждого процесса на MES5312 MES5316A MES5324A MES5332A
Команда для просмотра уровня загрузки CPU

Для просмотра использовать команду:

console# show tasks utilization

Источник:
docs.eltex-co.ru

[MES] Просмотр утилизации портов
На коммутаторах MES5448 MES7048 доступен просмотр утилизации портов. Вывод можно посмотреть по отдельному порту.

console# show interface 1/0/6

interface 1/0/6 is Up (connected)
Interface index is 6
Hardware is TenGigabit
Interface MTU is 1500
Link type is 1000 Full
Media type is 1GBase-T
0 link downs
0 link flaps
0d 18h 38m 53s time since counters last cleared
Flow control is off
30 seconds input rate is 949920848 bit/s, 149972 frame/s
30 seconds output rate is 948360608 bit/s, 149707 frame/s
60412011 packets input
515448167 bytes received
0 oversize errors
0 internal MAC errors
4 broadcast frames
0 multicast frames
0 total input errors
0 FCS errors
0 alignment errors
0 pause frames received
0 snmp input frames discarded
25025017 packets output
2581154364 bytes sent
8 broadcast errors
33034 multicast errors
0 output errors
0 total collisions
0 excessive collisions
0 late collisions
0 pause frames transmitted
0 snmp out frames discarded
Output queues: (queue #: packets passed/dropped)
UC0: 0/0
UC1: 4319961364/0
UC2: 0/0
UC3: 129/0
UC4: 0/0
UC5: 8/0
UC6: 33012/0
MC0: 0/0
MC1: 4/0
MC2: 0/0
MC3: 12/0

 

Или по всем портам с использованием команды show interface ethernet all. Утилизация отображается в процентах от пропускной способности интерфейса


 

Источник:
docs.eltex-co.ru

[MES] Редистрибуция маршрутов, подмена next-hop
Редистрибуция настраивается в контексте router bgp; router bgp 64700

Редистрибуция настраивается в контексте router bgp;

router bgp 64700

console(Config-router)#redistribute ?

connected Configure redistribution of Connected routes
kernel Configure redistribution of Kernel routes
ospf Configure redistribution of OSPF routes
rip Configure redistribution of RIP routes
static Configure redistribution of Static routes

 

next-hop-self. Эта команда настраивает BGP так, чтобы при анонсировании маршрутов внутренним узлам атрибут next-hop представлял собой локальный IP-адрес. В общем случае BGP сохраняет атрибут next-hop, полученный от внешнего узла.

Когда атрибут next-hop в маршрутах, полученных от внешних узлов, сохраняется, внутренним узлам требуется маршрут к IP-адресу внешнего узла. Обычно это решается путем настройки IGP на пограничном маршрутизаторе для анонсирования внешней (или DMZ) подсети. Опция next-hop-self устраняет необходимость анонсировать внешнюю подсеть в IGP.

Настраивается следующим образом:

router bgp 64700
neighbor 2.0.0.2 next-hop-self

Источник:
docs.eltex-co.ru

[MES] Резервирование конфигурации на TFTP-сервере для MES1024 MES1124 MES2124 MES31XX

Источник:
docs.eltex-co.ru

[MES] Резервирование конфигурации на TFTP-сервере для MES1400/2400
Коммутаторы MES позволяют резервировать конфигурацию на TFTP-сервере по таймеру или при сохранении текущей конфигурации.

Настройка:

1) Включаем автоматическое резервирование конфигурации на сервере

console(config)# backup auto

 

2) Указываем сервер, на который будет производиться резервирование конфигурации.

console(config)# backup server tftp://10.10.10.1

 

3) Указываем путь расположения файла на сервере

console(config)# backup path backup.conf

Примечание: При сохранении к префиксу будет добавляться текущая дата и время в формате ггггммддччммсс.

 

4) Включаем сохранение истории резервных копий

console(config)# backup history enable

 

5) Указываем промежуток  времени, по истечении которого будет осуществляться автоматическое резервирование конфигурации, в минутах.

console(config)# backup time-period 500

 

6) Включаем резервирование конфигурации при сохранении пользователем конфигурации

console(config)# backup write-memory

 

Команды show backup и show backup history позволяют посмотреть информацию о настройках резервирования конфигурации и об удачных попытках резервирования на сервере.

Источник:
docs.eltex-co.ru

[MES] Резервирование конфигурации на TFTP-сервере для MES5312 MES5316A MES5324A MES5332A

Коммутаторы MES позволяют резервировать конфигурацию на TFTP-сервере по таймеру или при сохранении текущей конфигурации.

Настройка:

1) Включаем автоматическое резервирование конфигурации на сервере

console(config)# backup auto

2) Указываем сервер, на который будет производиться резервирование конфигурации.

console(config)# backup server tftp://10.10.10.1

3) Указываем путь расположения файла на сервере

console(config)# backup path backup.conf

Примечание: При сохранении к префиксу будет добавляться текущая дата и время в формате ггггммддччммсс.

4) Включаем сохранение истории резервных копий

console(config)# backup history enable

5) Указываем промежуток  времени, по истечении которого будет осуществляться автоматическое резервирование конфигурации, в минутах.

console(config)# backup time-period 500

6) Включаем резервирование конфигурации при сохранении пользователем конфигурации

console(config)# backup write-memory

 

Команды show backup и show backup history позволяют посмотреть информацию о настройках резервирования конфигурации и об удачных попытках резервирования на сервере.

Источник:
docs.eltex-co.ru

[MES] Сброс конфигурации к заводским настройкам MES1024 MES1124 MES2124 MES3100

Сброс конфигурации к заводским настройкам возможно осуществить через CLI, выполнив команду

console# delete startup-config

и перезагрузив коммутатор, 

а также при помощи кнопки "F" на лицевой панели.

Для этого необходимо нажать и удерживать кнопку "F" не менее 15 секунд.

Коммутатор автоматически перезагрузится и начнет работу с заводскими настройками.

 

Источник:
docs.eltex-co.ru

[MES] Сброс конфигурации к заводским настройкам MES1400/2400

console# delete startup-config

и перезагрузив коммутатор, 

а также при помощи кнопки "F" на лицевой панели.

Для этого необходимо нажать и удерживать кнопку "F" не менее 15 секунд.

Коммутатор автоматически перезагрузится и начнет работу с заводскими настройками.

Источник:
docs.eltex-co.ru

[MES] Сброс настроек интерфейса в default
Пример настройки интерфейса:

2324B(config)#default interface gig0/10
Configuration for these interfaces will be set to default.
It may take a few minutes. Are sure you want to proceed? (Y/N)[N] Y
2324B(config)#

Источник:
docs.eltex-co.ru

[MES] Сброс настроек интерфейса в default на MES1400 MES2400
Выполнить команду и подтвердить её исполнение в глобальном режиме конфигурации:

console(config)# default interface gi0/10

Configuration for these interfaces will be set to default.

It may take a few minutes. Are sure you want to proceed? (Y/N)[N] Y

Источник:
docs.eltex-co.ru

[MES] Создание макроса для выполнения группы команд на MES1024 MES1124 MES2124 MES3100

Рассмотрим создание макроса на примере удаления порта из LAG.

Создать макрос можно командой:

macro name remove_g1_from_po1
config
interface gi1/0/24
no channel-group
switchport mode trunk
switchport trunk allowed vlan add 7,26,28,114,150,152,598-599,2794
@

Выполнение макроса можно запустить командой:

console# macro apply remove_g1_from_po1

Источник:
docs.eltex-co.ru

[MES] Создание макроса для выполнения группы команд на MES5312 MES5316A MES5324A MES5332A

Рассмотрим создание макроса на примере удаления порта из LAG.

Создать макрос можно командой:

macro name remove_g1_from_po1
config
interface gi1/0/24
no channel-group
switchport mode trunk
switchport trunk allowed vlan add 7,26,28,114,150,152,598-599,2794
@

 

Выполнение макроса можно запустить командой:

console# macro apply remove_g1_from_po1

Источник:
docs.eltex-co.ru

[MES] Статистика по выходным очередям qos (MES5448)
Статистика по выходным очередям активна по умолчанию. Команда для просмотра статистики: show interface

Статистика по выходным очередям активна по умолчанию.  Команда для просмотра статистики:

show interface <interface>

Например:

console#show interface 1/0/17

interface 1/0/17 is Up (connected)
Interface index is 17
Hardware is TenGigabit
Interface MTU is 1500
Link type is 10G Full
Media type is 10GBase-LR
0 link downs
0 link flaps
1d 22h 3m 6s time since counters last cleared
Flow control is off
300 seconds input rate is 496 bit/s, 0 frame/s
300 seconds output rate is 92848 bit/s, 171 frame/s
315240471 packets input
422293110 bytes received
0 oversize errors
0 internal MAC errors
315183763 broadcast frames
56708 multicast frames
0 total input errors
0 FCS errors
0 alignment errors
0 pause frames received
0 snmp input frames discarded
16678762 packets output
1135897068 bytes sent
16641081 broadcast errors
37681 multicast errors
0 output errors
0 total collisions
0 excessive collisions
0 late collisions
0 pause frames transmitted
0 snmp out frames discarded
Output queues: (queue #: packets passed/dropped)
UC0: 0/0
UC1: 0/0
UC2: 0/0
UC3: 629/0
UC4: 0/0
UC5: 54/0
UC6: 37574/0
MC0: 0/0
MC1: 4/0
MC2: 0/0
MC3: 16640502/0

Счётчики выводятся отдельно для unicast-трафика, это очереди UC0-UC6 (восьмая зарезервирована под стек). Отдельно для broadcast/multicast/unknown unicast MC0-3. Соответсвенно дропы будут раздельными для разного типа трафик. Счетчики MC0-3 также подчиняются правилам classofservice.

Мапинг по очередям можно посмотреть следующими командами.

COS:
show classofservice dot1p-mapping

DSCP:
show classofservice ip-dscp-mapping

 Для очистки счетчиков можно использовать команду clear counters.

console#clear counters 1/0/17

Are you sure you want to clear the port stats? (y/n) y


Port Stats Cleared.

console#

Источник:
docs.eltex-co.ru

[MES] Тестирование медного кабеля с выводом результата по каждой паре на MES1400 MES2400

console# test cable-diagnostics tdr interface GigabitEthernet 1/0/5

Port

Pair

Result

Lenght [m] 

Date

gi1/0/5

1-2

Open

1

24-Mar-2014 10:16:22

 

3-6

Open

1

 
 

4-5

Open

1

 
 

7-8

Open

1

 

 

Обрыв на расстоянии 1м по каждой паре.

Источник:
docs.eltex-co.ru

[MES] Удаление всех VLAN-ов одной командой в режиме работы порта trunk или general на MES5312 MES5316A MES5324A MES5332A
Как удалить все VLAN одной командой?

Для режима trunk:

console(config-if)# switchport trunk allowed vlan remove all

Для режима general:

console(config-if)# switchport general allowed vlan remove all

Источник:
docs.eltex-co.ru

[MES] Удаленный просмотр типа блоков питания на MES31ХХ

Такая возможность имеется начиная с версии ПО 2.5.34. 

Информация доступна по команде show system
Пример вывода информации:

console# show system

Main Power Supply Status [DC]: OK

Redundant Power Supply Status [AC]: OK

Также возможно получить информацию по SNMP. Информация находится в таблице :

  • rlEnvMonSupplyStatusTable
  • Oid:1.3.6.1.4.1.89.83.1.2

Источник:
docs.eltex-co.ru

[MES] Управление по SNMP на MES5448 MES7048
Базовая настройка SNMP для опроса коммутатора: console(Config)# snmp-server community public ro ipaddress 192.168.2.1 console(Config)# snmp-server community private rw ipaddress 192.168.2.1

Проверка настроек SNMP:

console# show snmp

 

Настройка отправки SNMP-trap:

console(Config)# snmp-server host 192.168.2.1 traps version 2 public

 

По умолчанию не для всех события генерируются snmp-trap. Для включения новых событий используется команды:

console(Config)# snmp-server enable traps {bgp, cpu, linkmode, memory, multiusers, sensor, storage, stpmode, violation, vrrp}

Для включения всех snmp-trap достаточно ввести команду snmp-server enable traps без указания конкретных событий

 

Проверка активных SNMP-trap:

console# show snmp

 

SNMPv3:

snmp-server engineid local 01234abcd1234ab1
snmp-server view "iso" internet included
snmp-server group "gr1" v3 auth notify "iso" read "iso" write "iso"
snmp-server group "gr1" v3 priv notify "iso" read "iso" write "iso"
snmp-server user "user1" gr1 auth-md5 12345678 priv-des 12345678

Источник:
docs.eltex-co.ru

[MES] Функция mac-based vlan на MES5312 MES5316A MES5324A MES5332A
Функция mac-based vlan позволяет определять принадлежность трафика к определённому vlan, основываясь на mac-адресе источника. Рассмотрим самый простейший пример настройки mac-based vlan.

Функция mac-based vlan позволяет определять принадлежность трафика к определённому vlan, основываясь на mac-адресе источника.

Рассмотрим самый простейший пример настройки mac-based vlan.

На ПК1 настроен адрес 192.168.1.1, на ПК2 192.168.1.2

Порт gigabitethernet 1/0/12 настроен в vlan 10

interface gigabitethernet1/0/12
switchport access vlan 10

Для ПК1 настроим перенаправление трафика на основе MAC address

Создаем правило, где mac ПК1 -  f4:f2:6d:03:42:31,  40 - битовая маска, macs-group 1 - идентификатор группы

vlan database
vlan 10
  map mac f4:f2:6d:03:42:31 40 macs-group 1
exit

Настраиваем порт interface gigabitethernet1/0/11

interface gigabitethernet1/0/11
switchport general map macs-group 1 vlan 10
switchport mode general
switchport general allowed vlan add 10 untagged

В результате  настроек ПК1 и ПК2 окажутся в одном vlan 10.

С помощью данной функции можно  предоставить с порта несколько услуг, например, телефоную и передачу данных.

Пример настройки vlan 69 - телефония, vlan 112 - передача данных, macs-group 1 - группа mac адресов телефонов

vlan database
vlan 112,69
   map mac 00:26:1e:00:00:00 32 macs-group 1
exit

interface gigabitethernet 1/0/10
switchport mode general
switchport general allowed vlan add 69,112 untagged
switchport general map macs-group 1 vlan 69
switchport general pvid 112
exit

Источник:
docs.eltex-co.ru

Используя наш сайт, Вы даёте согласие на обработку файлов cookie и пользовательских данных.
Оставаясь на сайте, Вы соглашаетесь с политикой их применения.
Ваш браузер сильно устарел.
Обновите его до последней версии или используйте другой более современный.
Пожалуйста, завершите проверку безопасности!
0
Корзина
Наименование Артикул Количество Сравнить